
International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 1

S

Adaptive Load-Balancing Job Scheduler Approach for Optimizing

Big Data Processing in Heterogeneous Clusters
Sunkari Mahesh [1], Dr K. Ram Mohan Rao [2]

[1] Research Scholer, Department of CSE Osmania University, Hyderabad, Telangana, India.
[2] Professor and Head, Department of IT VCE, OU, Hyderabad, Telangana, India.

ABSTRACT

In the rapidly expanding age of vast data accumulation, the efficient processing of massive datasets in heterogeneous Hadoop

clusters presents a big challenge. Traditional job schedulers often struggle to adapt to the dynamic and diverse nature of big data

workloads and the complexities of heterogeneous environments, leading to suboptimal resource utilization and extended job

execution times. This research introduces Adoptive Load Balancing schedular, a novel solution designed to overcome these

challenges. Our proposed model utilizes a dynamic, resource-aware scheduling algorithm that intelligently adapts to real-time

workload characteristics and node capabilities. It boasts a powerful optimization engine with Node Profiler, Adaptive

Scheduler, Task Classifier, Performance Monitor, and Load Balancer working seamlessly to enhance job execution and

resource utilization. Testing has been carried out on traditional and existing models, such as the default Hadoop schedulers and

with our proposed model and our proposed model demonstrated significant improvement. It outperformed these models in

various metrics, including job execution time, data allocation efficiency, data transfer time, and resource utilization. In

conclusion, the Adaptive Load-Balancing Job Scheduler Approach offers a significant improvement in the field of distributed

computing for big data analytics. It not only enhances the performance and efficiency of Hadoop clusters but also contributes to

economic and environmental sustainability by optimizing resource utilization. This approach shows the way for more

responsive, efficient, and scalable big data processing solutions in heterogeneous computing environments.

Keywords— Adaptive Scheduling, Load Balancing, Resource Utilization, Job Scheduler, Task Classification, Data Transfer

Efficiency, Dynamic Resource Allocation, Node Profiling, Scalable Data Processing.

I. INTRODUCTION

In the present big data era, efficiently processing extremely

large-scale data has become a challenge in the field of

distributed computing. The Hadoop ecosystem, with its

elastic and adaptable architecture, has been at the frontline

of big data analytics. However, the advent of heterogeneous

computing environments, characterized by clusters with

diverse computational resources, presents new challenges,

particularly in job scheduling and resource allocation. This

research work introduces an "Adaptive Load-Balancing Job

Scheduler Approach," aimed at optimizing big data

processing in such heterogeneous Hadoop clusters.

The Evolving Landscape of Big Data

The rapidly changing big data arena necessitates not only

sheer volume but also intricate data manipulation to satisfy

crucial performance indicators [22, 26]. Classic Hadoop

scheduling mechanisms like First-In-First-Out, Capacity,

and Fair often falter in diverse environments, resulting in

uneven resource allocation, prolonged job executions, and

untapped cluster potential.

While Hadoop has democratized big data processing, its

legacy job schedulers like FIFO, Capacity, and Fair,

struggle to cope with the complexities of modern, diverse

clusters. These static approaches lack the dynamism

necessary to effectively map resource allocation to the

varied capabilities of individual nodes and the distinct

demands of different tasks. Consequently, they often lead to

imbalanced resource utilization, prolonged job execution

times, and a significant underutilization of the cluster's

overall potential.

A. Addressing Cluster Diversity

One of the primary challenges in current Hadoop clusters

lies in their diverse nature. These clusters consist of nodes

with varied capabilities, ranging from different CPU and

memory setups to unique I/O and network bandwidth

capacities. While this diversity presents multiple

computational opportunities, it also makes the process of job

scheduling more complex.

B. Emphasizing a Flexible Scheduling Strategy

The foundational idea of this study is that a flexible,

dynamic approach to job scheduling can greatly improve

efficiency in diverse Hadoop clusters. By constantly

adjusting to the cluster's current state and each job's unique

demands, a flexible scheduler can optimize resource use,

minimize job processing times, and keep the workload

evenly distributed across the cluster.

C. Aims and Contributions of the Study

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 2

The objectives of this study include:

Creating a dynamic load-balancing job scheduler designed

for diverse environments.

Evaluating enhancements in job execution time, resource

efficiency, and overall throughput.

Assessing the new scheduler's effectiveness against

conventional Hadoop schedulers.

Investigating the new scheduler's capacity to handle varying

workloads and cluster sizes in terms of scalability and

adaptability.

D. Outline of the Study

This study is organized to initially address the existing

challenges in processing big data within diverse Hadoop

clusters. It then delves into the intricacies of the proposed

dynamic scheduler, covering its design and algorithmic

framework. The following sections provide a comparative

performance analysis against traditional models, and

discussions on scalability, adaptability, and practical

applications.

II. RELATED WORK

In their research, Y. Gao and team proposed a new job

scheduling approach for Hadoop YARN clusters, with an

emphasis on preemptive scheduling that prioritizes meeting

job deadlines and optimizing the use of resources [1].

Meanwhile, Abdallat and associates conducted an extensive

review of various job scheduling algorithms applicable to

Hadoop, with a special focus on real-time data processing

and strategies for efficient scheduling [2].Hashem and team

compared various resource scheduling mechanisms in

Hadoop, Mesos, and Corona, categorizing MapReduce

scheduling algorithms based on their strategies, resource

considerations, and workload optimization [3]. Equitable

allocation of task resources is a key factor in the Hadoop

cluster. It mainly guarantees not only the efficiency of job

execution but also the fairness among users under multiuser

task operation [4]. Javanmardi et al. pointed out that

considering fairness cannot take efficiency into account, and

considering efficiency cannot take good care of the fair

distribution of resource slots, so the author tried to consider

these two factors at the same time and allocate resources

fairly and reasonably to submitted jobs [5]. The scheduling

algorithm proposed by Yao et al. can schedule jobs

according to the weights of jobs, but the weights of jobs can

be directly interacted with the system by the tools provided

by the system. It can dynamically change the weights of

jobs when the program runs, so as to directly interfere with

the scheduler [6]

III. BACKGROUND

A. Big Data Processing

Involves handling massive volumes of diverse data to

extract valuable insights. It typically requires advanced

analytics techniques and robust computational infrastructure

to manage and analyze large datasets efficiently [4].

B. Hadoop Ecosystem

The Hadoop ecosystem is a framework designed to facilitate

the processing of large data sets across clusters of computers

using simple programming models. It is scalable, allowing

for the expansion from single servers to thousands of

machines, each offering local computation and storage. The

core components of the Hadoop ecosystem include:

Hadoop Distributed File System (HDFS): A distributed file

system that provides high-throughput access to application

data [24][27][28].

Hadoop YARN: A framework for job scheduling and cluster

resource management [25].

Hadoop MapReduce: A YARN-based system for parallel

processing of large data sets [23].

Apache Ambari: A tool for provisioning, managing, and

monitoring apache hadoop clusters. it provides a user-

friendly web interface for cluster management and supports

tasks like installing hadoop services, configuring the cluster,

and monitoring system health and performance.

C. Load Balancing

In the context of hadoop, load balancing refers to the

distribution of data processing tasks across all nodes in the

cluster in a manner that optimizes resource utilization and

prevents any single node from being overloaded. effective

load balancing ensures efficient processing and faster job

execution times.

D. Schedulers

In apache hadoop yarn (yet another resource negotiator),

several types of schedulers are used to manage resource

allocation for applications[1 -13]

FIFO Scheduler: The simplest scheduler that queues jobs in

a first-in-first-out manner. It doesn't account for resource

requirements of the jobs.

Capacity Scheduler: Designed for multi-tenant

environments, this scheduler allocates resources based on

predefined capacities for various organizations or groups.

Fair Scheduler: Allocates resources to ensure that all jobs

get, on average, an equal share of resources over time. It's

more flexible and provides fair distribution of resources

across all jobs.

Dynamic Resource Pool Scheduler (DRF): As an

enhancement of the Fair Scheduler, DRF is tailored for

environments with multiple resources, employing the

Dominant Resource Fairness algorithm for resource

allocation. These schedulers are adaptable within YARN to

meet various operational needs and workloads in a Hadoop

cluster.

E. Evaluating Performance

The effectiveness of the Adaptive Load-Balancing Job

Scheduler, which is developed for optimizing big data

processing in heterogeneous clusters, can be assessed using

several critical metrics, including:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 3

Job Execution Time: This metric tracks the duration

required to complete different jobs, where decreases in time

signify gains in efficiency.

Resource Utilization: Assesses how effectively cluster

resources (CPU, memory, disk I/O) are used.

Throughput: Tracks the number of tasks or amount of data

processed within a given timeframe.

Load Balancing Efficiency: Evaluates how evenly

workloads are distributed across the cluster.

Data Transfer Time: Measures the time taken for data

movement within the cluster.

Scalability: Assesses the scheduler's ability to efficiently

handle increasing data volumes and cluster sizes.

Node Utilization: Monitors individual node performance,

ensuring balanced utilization across the cluster.

F. Applications Tested

• SFTP file download: The big data platform is

relatively new compared to the conventional software

solutions deployed in several organizations. Many

organizations started their digitalization journey years

ago and relied on conventional databases and software

platforms built around these databases. Hence, the big

data solution is usually deployed as an independent

platform on the side not to disturb the usual processes.

FTP servers play a significant role in integrating big

data solutions with existing software platforms. The

FTP servers act as a gateway between conventional

software solutions and the Hadoop platform. The data

generated from these software products can be pushed

and stored into FTP servers, and the Hadoop platform

securely ingests the data through SFTP

• TeraGen: It is a MapReduce program that generates

large datasets for distributed storage systems and is

commonly used for benchmarking Hadoop's

performance. It generates data parallelly using multiple

Mappers based on the specified number of rows. Each

row has a format of 100 bytes, including a 10-byte key,

a 10-byte row id, 78 bytes of filler data, and a line

ending. The keys are random characters, while the filler

is comprised of characters from 'A' to 'Z'. The number

of Map tasks can be controlled by configuration

parameters.

TeraSort and TeraGen: These are benchmarking

applications in Hadoop MapReduce. TeraSort utilizes

the quicksort algorithm, and its number of Mappers

depends on the input splits generated by TeraGen.

TeraSort also constructs a trie of sample keys to assist

in sorting.

WordCount: This is a distributed Hadoop application

designed for counting word occurrences in datasets. It

processes input text files and outputs the frequency of

each unique word. WordCount can be configured with

multiple Mappers and employs a Combiner to enhance

performance by reducing network traffic.

IV. PROPOSED SYSTEM OVERVIEW

The "Adaptive Load-Balancing Job Scheduler

Approach" is tailored to optimize big data processing

within heterogeneous Hadoop clusters. Its primary

focus is on dynamic resource allocation and workload

balancing across various nodes in the cluster.

A. Key Components of the System

The system includes several critical components:

Node Profiler: This element continuously gathers and

analyzes data about each node's performance and

resource availability in the Hadoop cluster. It monitors

metrics like CPU usage, memory capacity, disk I/O, and

network bandwidth, which are vital for informed

scheduling decisions.

Task Classifier: This component categorizes tasks

based on their resource needs, considering factors like

CPU intensity, memory requirements, and I/O

operations. This classification aids in understanding the

specific nature of each task.

Adaptive Scheduler: As the system's cornerstone, this

scheduler dynamically assigns tasks to nodes, guided by

the current state of the cluster and individual task

requirements. It leverages data from the Node Profiler

and Task Classifier to make smart allocation choices,

aiming to enhance resource use and shorten job

execution times.

Load Balancer: This part ensures an even distribution of

workloads across the cluster. It monitors each node's load

and redistributes tasks as necessary to prevent overloading

any single node. The Load Balancer is key to maintaining a

balanced and efficient cluster operation.

These components synergistically work to boost the

efficiency and effectiveness of big data processing in

heterogeneous Hadoop clusters.

V. PROPOSED ALGORITHM

The algorithm combines node profiling, task classification,

dynamic scheduling, and performance monitoring to

develop an advanced job scheduler. It's specially designed to

adapt to the fluctuating demands of big data processing in

diverse cluster environments. The goal is to optimize data

processing efficiency and resource use while minimizing job

execution times and operational expenses.

The detailed pseudo code for the proposed Scheduler is

outlined in Figure 1.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 4

Figure 1: Pseudo code of ALBJS

The Adaptive Load-Balancing Job Scheduler for a

heterogeneous Hadoop cluster operates through a series of

systematic steps:

1. Initialization of Cluster Monitoring and Job Queue:

This step involves setting up systems to keep track

of the cluster's operational health and to manage

incoming job requests.

2. Collection of Real-Time Node Metrics: The

scheduler gathers current information regarding

CPU, memory, disk I/O, and network usage from

each node in the cluster.

3. Updating the Node Registry: The latest metrics

collected from each node are recorded in a

centralized registry, which maintains a

comprehensive record of the status and

performance of all nodes in the cluster.

4. Fetching Job Requests: This step involves

retrieving new job submissions that are queued for

processing.

5. Identification of Data Block Locations: The

scheduler determines the locations of the necessary

data for each job within the Hadoop Distributed

File System (HDFS).

6. Job Classification and Node Matching: Each job is

analysed to understand its specific resource

requirements. The scheduler then identifies the

most suitable nodes for these jobs based on their

current performance metrics.

7. Assignment of Jobs to Nodes: Jobs are allocated to

the selected nodes, taking into account data locality

to enhance performance by reducing data transfer

times.

8. Dynamic Priority Calculation and Update: The

scheduler calculates a dynamic priority score for

each node based on its current metrics, helping to

assess its readiness for additional workload or the

need for reduced allocation.

9. Redistribution of Jobs for Load Balancing: Jobs

may be reassigned as necessary to ensure that the

workload is evenly distributed across the cluster,

preventing any single node from becoming

overburdened.

10. Performance Monitoring and Policy Update: The

scheduler continuously monitors the execution of

jobs and the overall performance of the cluster.

Based on these observations, it adjusts scheduling

policies to optimize efficiency.

11. Preparation for the Next Scheduling Cycle: The

system briefly pauses until the commencement of

the next scheduling cycle.

The essence of the proposed scheduler lies in its dynamic

and responsive approach. By constantly updating its

knowledge of the cluster's status and adapting job

assignments accordingly, it seeks to optimize task

distribution, enhance resource utilization, and ensure a

balanced operational load across the Hadoop cluster. This

process not only improves job execution times but also

maintains the stability and efficiency of the cluster under

varying workload conditions.

VI. IMPLEMENTATION

A. Environment Setup

Amazon EC2's T2 instances are economical, all-purpose

instance types structured to offer a well-rounded

combination of processing power, memory, and network

capabilities. Characterized as burstable, these instances have

the ability to exceed their standard capacity by utilizing

accumulated CPU credits during low-usage periods. This

feature renders them particularly apt for tasks that

experience occasional spikes in CPU demand. The T2 line

presents a range of configurations, extending from t2.nano

to t2.2xlarge, to accommodate diverse CPU and memory

needs. For example, the t2.medium variant provides 2

vCPUs and 4GB of memory, while the t2.2xlarge option

includes 8 vCPUs and 32GB of memory, both maintaining

moderate network performance. These instances are ideal

for constructing a flexible and scalable Hadoop cluster

framework.

Description of a Diverse Cluster:

The formation of a heterogeneous cluster involves the use of

various T2 instance types from Amazon EC2, specifically

t2.medium, t2.xlarge, and t2.2xlarge. Tailored for Hadoop

YARN, this cluster consists of 11 nodes spread over three

racks. In this configuration, each rack accommodates 3

DataNodes, each powered by a distinct category of t2

instance. The cluster is further enhanced with the inclusion

of one NameNode and an edge node. The detailed

specifications of these EC2 instances, including their

respective configurations, are comprehensively outlined in

Table 1.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 5

Table 1: EC2 Instances Specification

Instance

Type
vCPU Memory Storage

Network

Performance

t2.medium 2 4GB 8GB
Low to

Moderate

t2.xlarge 4 16GB 8GB Moderate

t2.2xlarge 8 32GB 8GB Moderate

This architecture offers a broad spectrum of computational

resources, rendering the cluster adaptable to a multitude of

tasks. It exemplifies the versatility of Hadoop YARN in

handling diverse environments effectively.

B. Experimental Approach

For experimenting with the suggested scheduler strategy

utilizing Hadoop and the Apache Ambari platform, the

following procedures should be implemented:

Setup Process: The initial step involves configuring a

Hadoop cluster and installing Apache Ambari for its

monitoring and management. It's crucial to ensure that the

cluster comprises various node types, thereby establishing a

heterogeneous environment.

Baseline Measurement: Run standard benchmarking tasks

like TeraSort, TeraGen, and WordCount using the default

scheduler and record performance metrics using Ambari.

Implement Scheduler: Integrate the proposed scheduler

into Hadoop's YARN ResourceManager.

Run Experiments: Execute the same benchmarks with the

proposed scheduler activated. Use Ambari to monitor the

performance.

Data Analysis: Compare the metrics (job execution time,

CPU/memory utilization, etc.) from the default and

proposed schedulers to evaluate the improvements.

Predicted Results: Anticipate improved efficiency, reduced

job times, and better resource allocation from the proposed

scheduler compared to the default. Quantify the expected

enhancements in the performance metrics based on the

algorithm's design goals.

C. Results and Analysis

The experimental results of the proposed research work has

been presented in Table 2 below.

The analysis of the proposed ALBJS (Adaptive Load-

Balancing Job Scheduler) model shows it outperforms the

traditional FIFO, Capacity, Fair, and DRABRA schedulers

across all tasks. Notably, it improves SFTP times by 36.6%

compared to FIFO and by 17.9% compared to DRABRA.

For TeraGen and TeraSort, it shows a 22.7% and 24.6%

improvement over FIFO, respectively, and a 5.6% and

10.7% improvement over DRABRA. WordCount sees a

36.9% improvement from FIFO and 16.3% from DRABRA.

Overall, ALBJS reduces the total time by 30.2% compared

to FIFO and 13% compared to DRABRA, indicating a

significant enhancement in job scheduling efficiency.

Table 2: Performance comparison of ALBJS with other

schedulers

Scheduler

SFTP

(s)

Tera

Gen

(s)

Tera

Sort (s)

Word

count

(s)

Total

Time

(s)

FIFO 290 132 232 65 719

Capacity 251 121 210 61 643

Fair 274 119 208 54 655

DRABRA 224 108 196 49 577

ALBJS 184 102 175 41 502

Bar graph shown in Figure 2 below illustrates the

performance of various job schedulers in a Hadoop

environment. The ALBJS model demonstrates a marked

improvement over traditional scheduling algorithms like

FIFO, Capacity, and Fair, as well as the DRABR model.

The graph shows execution times for specific tasks like

SFTP, TeraSort, TeraGen, and WordCount, along with the

total time taken. The ALBJS model appears to have the

lowest times across all tasks, indicating higher efficiency

and faster processing, which suggests that ALBJS

effectively optimizes resource allocation and job scheduling.

The results of the proposed ALBJS model shown in the

Table 3 showcases an overall enhancement in various

performance metrics compared to the default and DRABR

schedulers. Specifically:

Job Execution Time Reduction: Improved by 23.3% over

the default and by 5.3% over DRABR. Average CPU

Usage: Increased usage efficiency by 33.3% over the default

and 6.7% over DRABR, indicating better CPU resource

utilization.Peak CPU Usage: A slight decrease by 5.6%

compared to the default, which may suggest more even CPU

load distribution.Lowest CPU Usage: A substantial increase

in efficiency by 150% over the default and 7.1% over

DRABR, highlighting better utilization of underperforming

nodes. Average Memory Usage: A 15.4% increase in

efficiency over the default, but a 6.25% decrease compared

to DRABR, possibly due to different memory management

strategies.

Figure 2: Comparison of ALBJS with other Job Schedulers

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 6

Data Locality: A 40% improvement over the default and

7.7% over DRABR, indicating that ALBJS is better at

executing tasks closer to where the data resides, thus

reducing network traffic and I/O wait times.

Table 3: Performance Analysis of different schedulers

These results suggest that the ALBJS model is particularly

effective in optimizing job scheduling and resource

utilization in a Hadoop cluster

Figure 3: Performance comparison of various Job

Schedulers

The data presented in Figure 3 graphically displays the

performance of various job schedulers, highlighting the

effectiveness of the Adaptive Load-Balancing Job Scheduler

(ALBJS) model. This visual representation indicates that

ALBJS significantly enhances job execution times and data

locality, outperforming both the standard and DRABR

schedulers. Additionally, it evidences considerable

improvements in CPU utilization, both in average and

minimum usage. However, a notable decrease in average

memory usage with ALBJS, in comparison to DRABR,

suggests an area for further exploration. Overall, the graph

underscores ALBJS's marked progress across multiple

critical metrics in Hadoop scheduling.

VII. CONCLUSIONS AND FUTURE

SCOPE

The ALBJS model has proven its efficacy in enhancing job

execution times and optimizing resource use within a

Hadoop framework. Its dynamic adaptation to real-time

node metrics allows for a more efficient task distribution,

leading to quicker job completions and improved alignment

with available computational resources.

Future enhancements for the ALBJS model are plentiful.

Incorporating machine learning algorithms to predict

workload patterns could enable proactive resource

adjustments. Focusing on augmenting memory usage

efficiency, particularly where it falls short of the DRABR

model, is another potential area for refinement. Testing the

scalability of ALBJS in larger and more intricate cluster

setups, as well as its adaptability to new big data

technologies, will be crucial to ensure its continued efficacy

amidst the ever-changing landscape of data analytics.

REFERENCES

[1] Y. Gao et al., "Deadline-aware preemptive job

scheduling in Hadoop YARN clusters," Journal of Cloud

Computing, vol. 12, no. 143, 2022.

[2] A. A. Abdallat et al., "Hadoop MapReduce job

scheduling algorithms survey and use cases," Modern

Applied Science, vol. 13, no. 7, 2019.

[3] I. A. T. Hashem et al., "MapReduce scheduling

algorithms: a review," Journal of Supercomputing, vol. 76,

pp. 4915-4945, 2020.

[4] A. Banu and M. Yakub, “Evolution of big data and tools

for big data analytics,” Journal of Interdisciplinary Cycle

Research, vol. 12, no. 10, pp. 309–316, 2020.

[5] A. K. Javanmardi, S. H. Yaghoubyan, K. Bagherifard, S.

Nejatian, and H. Parvin, “A unit-based, cost-efficient

scheduler for heterogeneous Hadoop systems,” The Journal

of Supercomputing, vol. 77, no. 1, pp. 1–22, 2021.

[6] Y. Yao, H. Gao, J. Wang, B. Sheng, and N. Mi, “New

scheduling algorithms for improving performance and

resource utilization in Hadoop YARN clusters,” IEEE

Transactions on Cloud Computing, vol. 9, no. 3, pp. 1158–

1171, 2021.

[7] PAS: Performance-Aware Job Scheduling for Big Data

Processing Systems" by Yiren Li et al. (2022), Scientific

Programming, Vol. 2022, Article ID 8598305

[8] Multiobjective Prioritized Workflow Scheduling in

Cloud Computing Using Cuckoo Search Algorithm" by

Babuli Sahu et al. (2023), Applied Bionics and

Biomechanics, Vol. 2023, Article ID 4350615

[9] MapReduce Scheduling Algorithms in Hadoop: a

Systematic Study" by Soudabeh Hedayati et al.

(2023), Journal of Cloud

Computing, Vol. 12, No. 12, pp. 143-154

[10] Big Data Processing Workflows Oriented Real-Time

Scheduling Algorithm using Task-Duplication in Geo-

Distributed Clouds" by Zhiyuan Li et al.

(2022), Sensors, Vol. 22, No. 20, pp. 7863

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 7

[11] A Hybrid Scheduling Approach for Heterogeneous Big

Data Processing" by Shaopeng Wang et al. (2021), IEEE

Transactions on Services

Computing, Vol. 14, No. 5, pp. 1432-1445

[12] A Survey on Job Scheduling Algorithms in Big Data

Processing" by Shuangshuang Li et al. (2020), International

Journal of Parallel Programming, Vol. 48, No. 3, pp. 609-

632

[13] A Deep Reinforcement Learning Approach for Big

Data Workflow Scheduling in Edge Computing" by

Jiazheng Liang et al. (2023), IEEE International Conference

on Big Data (BigData)

[14] Toward Efficient and Fair Scheduling for Multi-

Tenancy Big Data Processing" by Zihui Xu et al.

(2023), IEEE International Conference on Cluster

Computing (CLUSTER)

[15]Delay-Aware Scheduling for Big Data Workflows in

Heterogeneous Cloud Environments" by Qiang Li et al.

(2023), ACM Symposium on Cloud Computing (SoCC)

[16] Dynamic Workflow Scheduling Algorithm with

Resource Reservation for Spark Applications" by Yiming

Zhang et al. (2022), IEEE International Conference on Big

Data (BigData)

[17] Heterogeneous Resource Scheduling for Big Data

Applications with SLA Constraints" by Yu Wang et al.

(2022), IEEE International Conference on Big Data

(BigData)

[18] A Lightweight and Efficient Scheduling Algorithm for

Big Data Applications in Cloud Computing" by Jingjing Li

et al. (2021), International Conference on Big Data

(BigData)

[19] A Survey on Big Data Processing Workflow

Scheduling Algorithms" by Lei Wang et al. (2020), IEEE

Access, Vol. 8, pp. 191396-191414

[20] Big Data Scheduling Algorithms: A Survey" by

Muhammad Shoaib et al. (2020), Cluster

Computing, Vol. 23, No. 3, pp. 1603-1637

[21] A Comprehensive Survey on Big Data Workflow

Scheduling Mechanisms in Cloud Computing

Environments" by Lihong Ma et al. (2022), The Journal of

Supercomputing, Vol. 78, No. 10, pp. 12493-12553.

[22] The Google File System" by Sanjay Ghemawat et al.

(2003), ACM Transactions on Computer Systems (TOCS),

Vol. 20, No. 3

[23] MapReduce: Simplified Data Processing on Large

Clusters" by Jeffrey Dean and Sanjay Ghemawat (2004),

ACM Transactions on Computer Systems (TOCS), Vol. 22,

No. 1

[24] The Apache Hadoop Distributed File System" by

Konstantin Shvachko et al. (2010), Proceedings of the 2010

IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST)

[25] Yet Another Resource Negotiator (YARN)" by Vinod

Kumar Vavilapalli et al. (2013), Proceedings of the 12th

ACM Symposium on Operating Systems Principles (SOSP)

[26] Hadoop: The Definitive Guide" by Tom White (2012),

O'Reilly Media

[27] The Architecture of the Hadoop Distributed File

System" by Dhruba Borthakur (2008), IEEE Software, Vol.

25, No. 2

[28] HDFS Scalability: The Limits to Growth" by Benjamin

Reed and David A. Patterson (2013), Proceedings of the

23rd ACM Symposium on Operating Systems Principles

(SOSP).

http://www.ijcstjournal.org/

