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ABSTRACT  

In the rapidly expanding age of vast data accumulation, the efficient processing of massive datasets in heterogeneous Hadoop 

clusters presents a big challenge. Traditional job schedulers often struggle to adapt to the dynamic and diverse nature of big data 

workloads and the complexities of heterogeneous environments, leading to suboptimal resource utilization and extended job 

execution times. This research introduces Adoptive Load Balancing schedular, a novel solution designed to overcome these 

challenges. Our proposed model utilizes a dynamic, resource-aware scheduling algorithm that intelligently adapts to real-time 

workload characteristics and node capabilities. It boasts a powerful optimization engine with Node Profiler, Adaptive 

Scheduler, Task Classifier, Performance Monitor, and Load Balancer working seamlessly to enhance job execution and 

resource utilization. Testing has been carried out on traditional and existing models, such as the default Hadoop schedulers and 

with our proposed model and our proposed model demonstrated significant improvement. It outperformed these models in 

various metrics, including job execution time, data allocation efficiency, data transfer time, and resource utilization. In 

conclusion, the Adaptive Load-Balancing Job Scheduler Approach offers a significant improvement in the field of distributed 

computing for big data analytics. It not only enhances the performance and efficiency of Hadoop clusters but also contributes to 

economic and environmental sustainability by optimizing resource utilization. This approach shows the way for more 

responsive, efficient, and scalable big data processing solutions in heterogeneous computing environments. 

Keywords— Adaptive Scheduling, Load Balancing, Resource Utilization, Job Scheduler, Task Classification, Data Transfer 

Efficiency, Dynamic Resource Allocation, Node Profiling, Scalable Data Processing. 

 

I. INTRODUCTION  

In the present big data era, efficiently processing extremely 

large-scale data has become a challenge in the field of 

distributed computing. The Hadoop ecosystem, with its 

elastic and adaptable architecture, has been at the frontline 

of big data analytics. However, the advent of heterogeneous 

computing environments, characterized by clusters with 

diverse computational resources, presents new challenges, 

particularly in job scheduling and resource allocation. This 

research work introduces an "Adaptive Load-Balancing Job 

Scheduler Approach," aimed at optimizing big data 

processing in such heterogeneous Hadoop clusters. 

The Evolving Landscape of Big Data 

 

The rapidly changing big data arena necessitates not only 

sheer volume but also intricate data manipulation to satisfy  

crucial performance indicators [22, 26]. Classic Hadoop 

scheduling mechanisms like First-In-First-Out, Capacity, 

and Fair often falter in diverse environments, resulting in 

uneven resource allocation, prolonged job executions, and 

untapped cluster potential. 

While Hadoop has democratized big data processing, its 

legacy job schedulers like FIFO, Capacity, and Fair, 

struggle to cope with the complexities of modern, diverse 

clusters. These static approaches lack the dynamism 

necessary to effectively map resource allocation to the 

varied capabilities of individual nodes and the distinct 

demands of different tasks. Consequently, they often lead to  

 

 

imbalanced resource utilization, prolonged job execution 

times, and a significant underutilization of the cluster's 

overall potential. 

A. Addressing Cluster Diversity 

 

One of the primary challenges in current Hadoop clusters 

lies in their diverse nature. These clusters consist of nodes 

with varied capabilities, ranging from different CPU and 

memory setups to unique I/O and network bandwidth 

capacities. While this diversity presents multiple 

computational opportunities, it also makes the process of job 

scheduling more complex. 

B. Emphasizing a Flexible Scheduling Strategy 

 

The foundational idea of this study is that a flexible, 

dynamic approach to job scheduling can greatly improve 

efficiency in diverse Hadoop clusters. By constantly 

adjusting to the cluster's current state and each job's unique 

demands, a flexible scheduler can optimize resource use, 

minimize job processing times, and keep the workload 

evenly distributed across the cluster. 

C. Aims and Contributions of the Study 
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The objectives of this study include: 

Creating a dynamic load-balancing job scheduler designed 

for diverse environments. 

Evaluating enhancements in job execution time, resource 

efficiency, and overall throughput. 

Assessing the new scheduler's effectiveness against 

conventional Hadoop schedulers. 

Investigating the new scheduler's capacity to handle varying 

workloads and cluster sizes in terms of scalability and 

adaptability. 

D. Outline of the Study 

 

This study is organized to initially address the existing 

challenges in processing big data within diverse Hadoop 

clusters. It then delves into the intricacies of the proposed 

dynamic scheduler, covering its design and algorithmic 

framework. The following sections provide a comparative 

performance analysis against traditional models, and 

discussions on scalability, adaptability, and practical 

applications. 

II. RELATED WORK 

In their research, Y. Gao and team proposed a new job 

scheduling approach for Hadoop YARN clusters, with an 

emphasis on preemptive scheduling that prioritizes meeting 

job deadlines and optimizing the use of resources [1]. 

Meanwhile, Abdallat and associates conducted an extensive 

review of various job scheduling algorithms applicable to 

Hadoop, with a special focus on real-time data processing 

and strategies for efficient scheduling [2].Hashem and team 

compared various resource scheduling mechanisms in 

Hadoop, Mesos, and Corona, categorizing MapReduce 

scheduling algorithms based on their strategies, resource 

considerations, and workload optimization [3]. Equitable 

allocation of task resources is a key factor in the Hadoop 

cluster. It mainly guarantees not only the efficiency of job 

execution but also the fairness among users under multiuser 

task operation [4]. Javanmardi et al. pointed out that 

considering fairness cannot take efficiency into account, and 

considering efficiency cannot take good care of the fair 

distribution of resource slots, so the author tried to consider 

these two factors at the same time and allocate resources 

fairly and reasonably to submitted jobs [5]. The scheduling 

algorithm proposed by Yao et al. can schedule jobs 

according to the weights of jobs, but the weights of jobs can 

be directly interacted with the system by the tools provided 

by the system. It can dynamically change the weights of 

jobs when the program runs, so as to directly interfere with 

the scheduler [6] 

III. BACKGROUND 

A. Big Data Processing 

Involves handling massive volumes of diverse data to 

extract valuable insights. It typically requires advanced 

analytics techniques and robust computational infrastructure 

to manage and analyze large datasets efficiently [4]. 

B. Hadoop Ecosystem 

The Hadoop ecosystem is a framework designed to facilitate 

the processing of large data sets across clusters of computers 

using simple programming models. It is scalable, allowing 

for the expansion from single servers to thousands of 

machines, each offering local computation and storage. The 

core components of the Hadoop ecosystem include: 

Hadoop Distributed File System (HDFS): A distributed file 

system that provides high-throughput access to application 

data [24][27][28]. 

Hadoop YARN: A framework for job scheduling and cluster 

resource management [25]. 

Hadoop MapReduce: A YARN-based system for parallel 

processing of large data sets [23]. 

 

Apache Ambari: A tool for provisioning, managing, and 

monitoring apache hadoop clusters. it provides a user-

friendly web interface for cluster management and supports 

tasks like installing hadoop services, configuring the cluster, 

and monitoring system health and performance. 

C. Load Balancing 

In the context of hadoop, load balancing refers to the 

distribution of data processing tasks across all nodes in the 

cluster in a manner that optimizes resource utilization and 

prevents any single node from being overloaded. effective 

load balancing ensures efficient processing and faster job 

execution times. 

D. Schedulers 

In apache hadoop yarn (yet another resource negotiator), 

several types of schedulers are used to manage resource 

allocation for applications[1 -13] 

FIFO Scheduler: The simplest scheduler that queues jobs in 

a first-in-first-out manner. It doesn't account for resource 

requirements of the jobs. 

Capacity Scheduler: Designed for multi-tenant 

environments, this scheduler allocates resources based on 

predefined capacities for various organizations or groups. 

Fair Scheduler: Allocates resources to ensure that all jobs 

get, on average, an equal share of resources over time. It's 

more flexible and provides fair distribution of resources 

across all jobs. 

Dynamic Resource Pool Scheduler (DRF): As an 

enhancement of the Fair Scheduler, DRF is tailored for 

environments with multiple resources, employing the 

Dominant Resource Fairness algorithm for resource 

allocation. These schedulers are adaptable within YARN to 

meet various operational needs and workloads in a Hadoop 

cluster. 

E. Evaluating Performance 

 

The effectiveness of the Adaptive Load-Balancing Job 

Scheduler, which is developed for optimizing big data 

processing in heterogeneous clusters, can be assessed using 

several critical metrics, including: 
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Job Execution Time: This metric tracks the duration 

required to complete different jobs, where decreases in time 

signify gains in efficiency. 

Resource Utilization: Assesses how effectively cluster 

resources (CPU, memory, disk I/O) are used. 

Throughput: Tracks the number of tasks or amount of data 

processed within a given timeframe. 

Load Balancing Efficiency: Evaluates how evenly 

workloads are distributed across the cluster. 

Data Transfer Time: Measures the time taken for data 

movement within the cluster. 

Scalability: Assesses the scheduler's ability to efficiently 

handle increasing data volumes and cluster sizes. 

Node Utilization: Monitors individual node performance, 

ensuring balanced utilization across the cluster. 

F. Applications Tested 

 
• SFTP file download: The big data platform is 

relatively new compared to the conventional software 

solutions deployed in several organizations. Many 

organizations started their digitalization journey years 

ago and relied on conventional databases and software 

platforms built around these databases. Hence, the big 

data solution is usually deployed as an independent 

platform on the side not to disturb the usual processes. 

FTP servers play a significant role in integrating big 

data solutions with existing software platforms. The 

FTP servers act as a gateway between conventional 

software solutions and the Hadoop platform. The data 

generated from these software products can be pushed 

and stored into FTP servers, and the Hadoop platform 

securely ingests the data through SFTP 

• TeraGen: It is a MapReduce program that generates 

large datasets for distributed storage systems and is 

commonly used for benchmarking Hadoop's 

performance. It generates data parallelly using multiple 

Mappers based on the specified number of rows. Each 

row has a format of 100 bytes, including a 10-byte key, 

a 10-byte row id, 78 bytes of filler data, and a line 

ending. The keys are random characters, while the filler 

is comprised of characters from 'A' to 'Z'. The number 

of Map tasks can be controlled by configuration 

parameters. 

TeraSort and TeraGen: These are benchmarking 

applications in Hadoop MapReduce. TeraSort utilizes 

the quicksort algorithm, and its number of Mappers 

depends on the input splits generated by TeraGen. 

TeraSort also constructs a trie of sample keys to assist 

in sorting. 

 

WordCount: This is a distributed Hadoop application 

designed for counting word occurrences in datasets. It 

processes input text files and outputs the frequency of 

each unique word. WordCount can be configured with 

multiple Mappers and employs a Combiner to enhance 

performance by reducing network traffic. 

 

IV. PROPOSED SYSTEM OVERVIEW 
 

The "Adaptive Load-Balancing Job Scheduler 

Approach" is tailored to optimize big data processing 

within heterogeneous Hadoop clusters. Its primary 

focus is on dynamic resource allocation and workload 

balancing across various nodes in the cluster. 

A. Key Components of the System 

The system includes several critical components: 

Node Profiler: This element continuously gathers and 

analyzes data about each node's performance and 

resource availability in the Hadoop cluster. It monitors 

metrics like CPU usage, memory capacity, disk I/O, and 

network bandwidth, which are vital for informed 

scheduling decisions. 

Task Classifier: This component categorizes tasks 

based on their resource needs, considering factors like 

CPU intensity, memory requirements, and I/O 

operations. This classification aids in understanding the 

specific nature of each task. 

Adaptive Scheduler: As the system's cornerstone, this 

scheduler dynamically assigns tasks to nodes, guided by 

the current state of the cluster and individual task 

requirements. It leverages data from the Node Profiler 

and Task Classifier to make smart allocation choices, 

aiming to enhance resource use and shorten job 

execution times. 

Load Balancer: This part ensures an even distribution of 

workloads across the cluster. It monitors each node's load 

and redistributes tasks as necessary to prevent overloading 

any single node. The Load Balancer is key to maintaining a 

balanced and efficient cluster operation. 

These components synergistically work to boost the 

efficiency and effectiveness of big data processing in 

heterogeneous Hadoop clusters. 

 

V. PROPOSED ALGORITHM 
 

The algorithm combines node profiling, task classification, 

dynamic scheduling, and performance monitoring to 

develop an advanced job scheduler. It's specially designed to 

adapt to the fluctuating demands of big data processing in 

diverse cluster environments. The goal is to optimize data 

processing efficiency and resource use while minimizing job 

execution times and operational expenses. 

The detailed pseudo code for the proposed Scheduler is 

outlined in Figure 1. 
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Figure 1: Pseudo code of ALBJS 

 

The Adaptive Load-Balancing Job Scheduler for a 

heterogeneous Hadoop cluster operates through a series of 

systematic steps: 

1. Initialization of Cluster Monitoring and Job Queue: 

This step involves setting up systems to keep track 

of the cluster's operational health and to manage 

incoming job requests. 

2. Collection of Real-Time Node Metrics: The 

scheduler gathers current information regarding 

CPU, memory, disk I/O, and network usage from 

each node in the cluster. 

3. Updating the Node Registry: The latest metrics 

collected from each node are recorded in a 

centralized registry, which maintains a 

comprehensive record of the status and 

performance of all nodes in the cluster. 

4. Fetching Job Requests: This step involves 

retrieving new job submissions that are queued for 

processing. 

5. Identification of Data Block Locations: The 

scheduler determines the locations of the necessary 

data for each job within the Hadoop Distributed 

File System (HDFS). 

6. Job Classification and Node Matching: Each job is 

analysed to understand its specific resource 

requirements. The scheduler then identifies the 

most suitable nodes for these jobs based on their 

current performance metrics. 

7. Assignment of Jobs to Nodes: Jobs are allocated to 

the selected nodes, taking into account data locality 

to enhance performance by reducing data transfer 

times. 

8. Dynamic Priority Calculation and Update: The 

scheduler calculates a dynamic priority score for 

each node based on its current metrics, helping to 

assess its readiness for additional workload or the 

need for reduced allocation. 

9. Redistribution of Jobs for Load Balancing: Jobs 

may be reassigned as necessary to ensure that the 

workload is evenly distributed across the cluster, 

preventing any single node from becoming 

overburdened. 

10. Performance Monitoring and Policy Update: The 

scheduler continuously monitors the execution of 

jobs and the overall performance of the cluster. 

Based on these observations, it adjusts scheduling 

policies to optimize efficiency. 

11. Preparation for the Next Scheduling Cycle: The 

system briefly pauses until the commencement of 

the next scheduling cycle. 

The essence of the proposed scheduler lies in its dynamic 

and responsive approach. By constantly updating its 

knowledge of the cluster's status and adapting job 

assignments accordingly, it seeks to optimize task 

distribution, enhance resource utilization, and ensure a 

balanced operational load across the Hadoop cluster. This 

process not only improves job execution times but also 

maintains the stability and efficiency of the cluster under 

varying workload conditions. 

VI. IMPLEMENTATION 

A. Environment Setup 

Amazon EC2's T2 instances are economical, all-purpose 

instance types structured to offer a well-rounded 

combination of processing power, memory, and network 

capabilities. Characterized as burstable, these instances have 

the ability to exceed their standard capacity by utilizing 

accumulated CPU credits during low-usage periods. This 

feature renders them particularly apt for tasks that 

experience occasional spikes in CPU demand. The T2 line 

presents a range of configurations, extending from t2.nano 

to t2.2xlarge, to accommodate diverse CPU and memory 

needs. For example, the t2.medium variant provides 2 

vCPUs and 4GB of memory, while the t2.2xlarge option 

includes 8 vCPUs and 32GB of memory, both maintaining 

moderate network performance. These instances are ideal 

for constructing a flexible and scalable Hadoop cluster 

framework. 

Description of a Diverse Cluster: 

The formation of a heterogeneous cluster involves the use of 

various T2 instance types from Amazon EC2, specifically 

t2.medium, t2.xlarge, and t2.2xlarge. Tailored for Hadoop 

YARN, this cluster consists of 11 nodes spread over three 

racks. In this configuration, each rack accommodates 3 

DataNodes, each powered by a distinct category of t2 

instance. The cluster is further enhanced with the inclusion 

of one NameNode and an edge node. The detailed 

specifications of these EC2 instances, including their 

respective configurations, are comprehensively outlined in 

Table 1. 
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Table 1: EC2 Instances Specification 

Instance 

Type 
vCPU Memory Storage 

Network 

Performance 

t2.medium 2 4GB 8GB 
Low to 

Moderate 

t2.xlarge 4 16GB 8GB Moderate 

t2.2xlarge 8 32GB 8GB Moderate 

 

This architecture offers a broad spectrum of computational 

resources, rendering the cluster adaptable to a multitude of 

tasks. It exemplifies the versatility of Hadoop YARN in 

handling diverse environments effectively. 

 

B. Experimental Approach 

 

For experimenting with the suggested scheduler strategy 

utilizing Hadoop and the Apache Ambari platform, the 

following procedures should be implemented: 

Setup Process: The initial step involves configuring a 

Hadoop cluster and installing Apache Ambari for its 

monitoring and management. It's crucial to ensure that the 

cluster comprises various node types, thereby establishing a 

heterogeneous environment. 

 

Baseline Measurement: Run standard benchmarking tasks 

like TeraSort, TeraGen, and WordCount using the default 

scheduler and record performance metrics using Ambari. 

 

Implement Scheduler: Integrate the proposed scheduler 

into Hadoop's YARN ResourceManager. 

 

Run Experiments: Execute the same benchmarks with the 

proposed scheduler activated. Use Ambari to monitor the 

performance. 

 

Data Analysis: Compare the metrics (job execution time, 

CPU/memory utilization, etc.) from the default and 

proposed schedulers to evaluate the improvements. 

 

Predicted Results: Anticipate improved efficiency, reduced 

job times, and better resource allocation from the proposed 

scheduler compared to the default. Quantify the expected 

enhancements in the performance metrics based on the 

algorithm's design goals. 

 

C. Results and Analysis 

The experimental results of the proposed research work has 

been presented in Table 2 below. 

The analysis of the proposed ALBJS (Adaptive Load-

Balancing Job Scheduler) model shows it outperforms the 

traditional FIFO, Capacity, Fair, and DRABRA schedulers 

across all tasks. Notably, it improves SFTP times by 36.6% 

compared to FIFO and by 17.9% compared to DRABRA. 

For TeraGen and TeraSort, it shows a 22.7% and 24.6% 

improvement over FIFO, respectively, and a 5.6% and 

10.7% improvement over DRABRA. WordCount sees a 

36.9% improvement from FIFO and 16.3% from DRABRA. 

Overall, ALBJS reduces the total time by 30.2% compared 

to FIFO and 13% compared to DRABRA, indicating a 

significant enhancement in job scheduling efficiency. 

 

Table 2: Performance comparison of ALBJS with other 

schedulers 

Scheduler 

SFTP 

(s) 

Tera         

Gen 

(s) 

Tera        

Sort (s) 

Word           

count 

(s) 

Total 

Time 

(s) 

FIFO 290 132 232 65 719 

Capacity 251 121 210 61 643 

Fair 274 119 208 54 655 

DRABRA 224 108 196 49 577 

ALBJS 184 102 175 41 502 

 

Bar graph shown in Figure 2 below illustrates the 

performance of various job schedulers in a Hadoop 

environment. The ALBJS model demonstrates a marked 

improvement over traditional scheduling algorithms like 

FIFO, Capacity, and Fair, as well as the DRABR model. 

The graph shows execution times for specific tasks like 

SFTP, TeraSort, TeraGen, and WordCount, along with the 

total time taken. The ALBJS model appears to have the 

lowest times across all tasks, indicating higher efficiency 

and faster processing, which suggests that ALBJS 

effectively optimizes resource allocation and job scheduling. 

The results of the proposed ALBJS model shown in the 

Table 3 showcases an overall enhancement in various 

performance metrics compared to the default and DRABR 

schedulers. Specifically: 

Job Execution Time Reduction: Improved by 23.3% over 

the default and by 5.3% over DRABR. Average CPU 

Usage: Increased usage efficiency by 33.3% over the default 

and 6.7% over DRABR, indicating better CPU resource 

utilization.Peak CPU Usage: A slight decrease by 5.6% 

compared to the default, which may suggest more even CPU 

load distribution.Lowest CPU Usage: A substantial increase 

in efficiency by 150% over the default and 7.1% over 

DRABR, highlighting better utilization of underperforming 

nodes. Average Memory Usage: A 15.4% increase in 

efficiency over the default, but a 6.25% decrease compared 

to DRABR, possibly due to different memory management 

strategies. 

 
Figure 2: Comparison of ALBJS with other Job Schedulers 
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Data Locality: A 40% improvement over the default and 

7.7% over DRABR, indicating that ALBJS is better at 

executing tasks closer to where the data resides, thus 

reducing network traffic and I/O wait times. 

Table 3: Performance Analysis of different schedulers 

 
These results suggest that the ALBJS model is particularly 

effective in optimizing job scheduling and resource 

utilization in a Hadoop cluster 

 
Figure 3: Performance comparison of various Job 

Schedulers 

The data presented in Figure 3 graphically displays the 

performance of various job schedulers, highlighting the 

effectiveness of the Adaptive Load-Balancing Job Scheduler 

(ALBJS) model. This visual representation indicates that 

ALBJS significantly enhances job execution times and data 

locality, outperforming both the standard and DRABR 

schedulers. Additionally, it evidences considerable 

improvements in CPU utilization, both in average and 

minimum usage. However, a notable decrease in average 

memory usage with ALBJS, in comparison to DRABR, 

suggests an area for further exploration. Overall, the graph 

underscores ALBJS's marked progress across multiple 

critical metrics in Hadoop scheduling. 

VII. CONCLUSIONS AND FUTURE 

SCOPE 

 

The ALBJS model has proven its efficacy in enhancing job 

execution times and optimizing resource use within a 

Hadoop framework. Its dynamic adaptation to real-time 

node metrics allows for a more efficient task distribution, 

leading to quicker job completions and improved alignment 

with available computational resources. 

Future enhancements for the ALBJS model are plentiful. 

Incorporating machine learning algorithms to predict 

workload patterns could enable proactive resource 

adjustments. Focusing on augmenting memory usage 

efficiency, particularly where it falls short of the DRABR 

model, is another potential area for refinement. Testing the 

scalability of ALBJS in larger and more intricate cluster 

setups, as well as its adaptability to new big data 

technologies, will be crucial to ensure its continued efficacy 

amidst the ever-changing landscape of data analytics. 
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