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ABSTRACT 
The primary objective of hyperspectral images was originally military-oriented; however, it has since expanded to 

include precision agriculture. The utilization of hyperspectral images related to machine learning algorithms takes into 

consideration exact crop classification and disease detection. These images capture a broad range of wavelengths, 

enabling the monitoring of various agricultural crops, including cereals, oilseeds, vegetables, and fruits. By utilizing 

hyperspectral images, farmers can assess crop conditions, including maturity index and nutrient status, and detect dis-

eases that could lead to significant crop losses.Here we take a close look at the most important uses of hyperspectral 

images in farming, as well as the ways in which AI algorithms like ML and DL could be used to detect and identify 

crop diseases in cereals, oilseeds, fruits, and veggies. This research is the result of a comprehensive literature review 

that spanned a decade. The study looks at how these technological tools for sustainable agriculture are being integrated 

and highlights the most well-documented crops, like citrus fruits and some grains that are grown extensively and in 

great demand. In addition, the review lists and categorizes the main AI algorithms under development as well as the 

wavelength ranges that are being used to forecast, identify, and carry out other sustainable production-related tasks.In 

order to apply the best artificial intelligence algorithms, this review is a useful resource for future study on agricultural 

crop detection, categorization, and decision-making. 
Keywords — Hyperspectral image, Plant diseases, Disease detection, Machine learning, Deep learning, Precision agriculture, Arti-

ficial intelligence, Remote sensing, Crop classification. 

 

 

I. INTRODUCTION 

The population of the globe has increased signifi-

cantly in recent years, according to reports from the 

United Nations (UN), and is expected to reach at least 9.1 

billion by 2050[1]. The demand for food is predicted to 

rise dramatically as a result of this population boom, es-

pecially in emerging nations where worries about food se-

curity are becoming more pressing. Extended droughts, 

floods, and changes in temperature and rainfall patterns 

are some of the ways that climate change offers serious 

difficulties to agricultural production[2]. Using modern 

technology in agriculture to maximize crop yield and 

boost productivity in controlled situations is crucial to ad-

dressing these issues. Using artificial intelligence and hy-

perspectral cameras for image analysis is one such 

technology[3, 4]. The most crucial elements of integrating 

these technologies will be covered in this paper. 

The electromagnetic spectrum is made up of several 

bands, each of which represents a particular kind of light 

energy (Figure 1). 400–700 nm wavelengths are visible to 

the human eye[5]. Conversely, hyperspectral sensors 

cover a wide range of spectral bands, from ultraviolet 

(UV) to longwave infrared (LWIR) wavelengths, and can 

often record over 200 of them. The agriculture industry 

has been greatly impacted by the new technology known 

as hyperspectral cameras in recent years. Farmers may 

identify possible problems with plant health and take pre-

ventive action before they worsen thanks to the high-res-

olution images and numerous wavelength bands that these 

cameras can capture[6, 7]. 
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Figure 1: The hyper spectral range is situated within the electromagnetic spectrum (source: the authors). 

 

Using multispectral pictures, scientists have been devot-

ing a significant amount of effort and money to the diagnosis 

of plant diseases. The 3 to 20 non-contiguous bands that make 

up these images are typically crucial for identifying diseases 

[8]. Large-scale  agricultural analysis has been made more 

viable by analysts utilizing machine learning and deep learn-

ing draws near [9]. As a substitute for multispectral photo-

graphs, hyperspectral images have just lately gained popular-

ity. 

By utilizing tight spectral bands and consolidating arti-

ficial intelligence, PC vision, and machine learning strategies, 

images offer a total understanding of the substance and or-

ganic properties of plants and soil [3]. 

Various studies have been carried out with an aim to im-

prove agricultural crop management, specifically concentrat-

ing on non-invasive plant disease diagnosis methods. In these 

studies, hyperspectral camera remote sensing has shown to be 

an inventive tactic that has attracted a lot of interest.  

[10,11]. Hyperspectral imaging is well known for its ap-

plication in crop categorization, plant variety identification, 

and plant phenotyping—the study of a plant's morphology, 

physiology, and biochemistry. This approach offers a more 

thorough characterisation of plant performance and its inter-

actions with the environment by evaluating these attributes 

over a broad range of neighboring bands [13]. Furthermore, 

research on disease detection in agricultural crops has made 

use of remote sensing techniques [14,15,16]. Machine learn-

ing is a useful tool in artificial intelligence that offers numer-

ous applications when combined with hyperspectral images. 

Some research articles explore the potential of combining ro-

botics with hyperspectral image processing, while others pro-

pose using robotic systems to replace human operators for 

capturing hyperspectral images at the leaf level in the field 

using low-cost, portable devices [17]. The detection of unde-

sirable plants, or weeds, in particular agricultural crop varie-

ties is one such use. This lessens the negative impacts on the 

environment by enabling farmers to apply herbicides to spe-

cific locations rather than the entire field [18]. Furthermore, 

individual crop and soil health can be evaluated using hyper-

spectral imaging and machine learning, allowing for the tar-

geted delivery of pesticides to sick plants. Other tasks that ma-

chine learning can be utilized for include plant phenotyping, 

calculating nutrient levels, recognizing crop varieties, and de-

tecting and categorizing crop illnesses [19, 20, 21]. 

This paper plans to investigate the utilization of hyperspectral 

images in horticultural crops, with an accentuation on essen-

tial calculations in light of machine learning and deep learning 

for detection and classification. It will likewise cover the 

ghastly ranges broadly utilized by crops like oats, oilseeds, 

and a few organic products. This is the way the article is orga-

nized: The initial segment gives a rundown of hyperspectral 

picture innovation and its applications in cultivating. In the 

subsequent part, we frame the examination approach that was 

followed for this audit. In the third segment, we analyze the 

innovation that depends on hyperspectral images and the af-

tereffects of this examination utilizing artificial intelligence 

approaches, for example, deep learning and machine learning. 

The difficulties introduced by this innovation are examined 

and deduced in the fourth and fifth segments, which likewise 

offer an outline of the perspectives and results. 

II. METHODOLOGY 

The article conducted three stages of work to assess and 

examine the bibliographic references cited, which are illus-

trated in Figure 2. 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024 

 

ISSN: 2347-8578                 www.ijcstjournal.org                       Page 39 

 
Figure 2: Depicts the stages implemented in the review analysis process as illustrated by the authors.

II.1. Stage 1: Search 

The following describes the methodological ap-

proach that was used during the first phase of the search. 

Selection of Database 

A thorough search was done using a number of 

scholarly databases, including: 

• Science Direct 

• Web of Science 

• Scopus 

• MDPI 

• Frontiersin Science 

• GoogleScholar (for complementary grey litera-

ture). 

• Keywords 

The search strings used the following keywords and their 

combinations. 

• Hyperspectral Imaging 

• Machine learning 

• Crop Disease Detection 

• Crop Disease Identification 

• Precision Agriculture. 

• HSI and ML for Crop Disease Detection and 

Identification: 

In-clusion Criteria: 

•  Peer-reviewed English-language research articles 

published between 2013 and 2023 that focus on the 

diagnosis and detection of agricultural diseases using 

hyperspectral imaging and machine learning. 

• Research examining the benefits and drawbacks of 

several machine learning methods used for HSI data 

processing in connection to agricultural disease de-

tection and classification 

Ex-clusion Criteria: 

• Research publications that specifically concentrate on 

the advancement or design aspects of HSI technology 

and refrain from investigating its use in disease diag-

nosis or categorization. 

• Editorials, Conference proceedings, and opinions that 

don't present significant data or assessments. 

• Articles published in languages other than English are 

not considered. 

Section Process: 

• Mendeley Desktop v1.19.8 or EndNote 21 were used 

as reference management tools to remove duplicates 

from the initial search results. 

• This was followed by a thorough evaluation of the ab-

stracts and titles using the inclusion and exclusion cri-

teria. 

• After that, the remaining papers were carefully scru-

tinized to make sure they answered the research topic. 

Synthesis Process: 

The selected study was analyzed and interpreted us-

ing a narrative synthesis methodology; key themes and 

supporting data about the use of HIS and other machine 

learning methods for agricultural disease detection and di-

agnosis were subsequently retrieved. Advantages of non-

invasiveness, early disease detection, and potential spe-

cies discrimination were the main points of the review. 

The difficulties posed by the volume of data, the expense, 

and the fluctuating field conditions were also covered. Fi-

nally, possible avenues for this field's future research were 

investigated. 

Based on the gathered data, it can be concluded that 

hyperspectral cameras are very helpful in agricultural ap-

plications including early disease or insect identification, 

better irrigation and fertilizer application, and crop quality 

evaluation. These cameras are helpful in assessing crop 

ripeness as well. Research articles on the connection 
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between hyperspectral photos and cropping have been 

published much more frequently throughout the last ten 

years. Figure 3 shows the results of a preliminary search 

using the terms kind of crop and hyperspectral, which pro-

duced a lot of hits. 

 

In Figure 3: The number of annual publications fea-

turing the terms crops and hyperspectral images is de-

picted (courtesy of the authors). 

In the course of searching, it was uncovered that ce-

reals, such as wheat, rice, and corn, are the crops that em-

ploy hyperspectral images most frequently, with 346, 346, 

and 291 publications in 2022, respectively. When it comes 

to fruit trees, citrus fruits, like oranges and apples, with 

413 and 199 publications, respectively, are particularly 

noteworthy. Additionally, legumes, such as Soybeans 

with 211 publications and Beans with 112 publications, 

also deserve mention. It is worth noting that the total num-

ber of publications in 2023 surpasses that of 2022, with a 

total of 3297 compared to 2942. 

Hyperspectral image-based non-invasive illness de-

tection is used in a large number of published publications 

[14, 22–24]. This technique can be used in conjunction 

with neural networks and other tools to perform tasks re-

lated to disease identification and classification [25]. 

After preliminary analysis, two primary research areas 

were found: the identification of diseases in agricultural 

crops and the application of hyperspectral images for mul-

tiple applications, including crop phenotyping, nutrient 

identification, vegetable variety classification, leaf level 

assessment, maturity index determination, and more. 

II.2. Stage 2: Structuring 

In the second phase of the project, we identified the 

main themes and significant journals by conducting a pre-

liminary analysis, the results of which are shown in Figure 

3. Table 1, which is included in the crucial information we 

have compiled, lists the essential journals that were uti-

lized in this extensive examination. 

Table 1 offers a concise overview of the journals 

that were assessed. Based on the authors' reports, this table 

includes details about each journal's SJR (SCImago Jour-

nal Rank), JCR (Journal Citation Report), and ND (num-

ber of documents). 

Journal Cite Score SJR H-Index JCR ISSN ND 

Computers and Electronics in 

Agriculture 
13.6 1.59 149 8.3 0168-1699 19 

Remote-Sensing 7.9 1.14 168 5.0 2072-4292 7 

Infrared Physics and Technol-

ogy 
5.6 0.6 78 3.3 1350-4495 6 
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Journal Cite Score SJR H-Index JCR ISSN ND 

Food Chemistry 14.9 1.62 302 8.8 1873-7072 6 

Sensors 6.8 0.76 219 3.9 1424-8220 5 

Agronomy 5.2 0.66 67 3.7 2073-4395 4 

Biosystems Engineering 10.1 1.06 125 5.1 1537-5129 3 

Journal of Cereal Science 6.8 0.74 131 3.8 1095-9963 3 

Journal of Food Composition 

and Analysis 
5.5 0.65 130 4.3 1096-0481 2 

Journal of Integrative Agricul-

ture 
7.2 0.94 69 4.8 2095-3119 2 

Sensors and Actuators B: 

Chemical 
14.6 0.64 145 8.4 0925-4005 2 

Spectrochemical Acta Part A: 

Molecular and Biomolecular 

Spectroscopy 

7.9  0.64 145 1386-1425 2 

ISPRS Journal of Photogram-

metry and Remote Sensing 
19.2 3.31 174 12.7 0924-2716 2 

International Journal of Ap-

plied Earth Observation and 

Geoinformation 

10.2 1.63 120 7.50 1872-26X 2 

Plant Methods 5.10 1.12 86 5.10 1746-4811 2 

Ecological Informatics 6.10 0.92 66 5.10 1574-9541 2 

IEEE Computer Science (mis-

cellaneous) 
3.50 0.93 204 3.90 2169-3536 2 

International Journal of Re-

mote Sensing 
7.0 0.73 195 3.40 1366-5901 1 

Frontiers of Plant Sciences 7.10 1.23 187 5.60 1664-462X 1 

To ensure that the study remained focused and rele-

vant, several steps were taken. Firstly, a bibliographic da-

tabase was organized and all documents were closely 

monitored to verify the selection of articles. Secondly, 

each selected article was thoroughly inspected to confirm 

that it met the criteria and research areas. Thirdly, any ar-

ticles that were deemed irrelevant to the study were elim-

inated. Finally, the remaining articles were carefully as-

sessed to ensure that they were aligned with the research 

objectives. 

II.3. Stage 3: Analysis 

Data analysis was done throughout the project's fi-

nal stages. First, every item was carefully examined, and 

relevant data was taken out. Second, each article's col-

lected data was categorized and entered into the results ta-

bles. Following that, bibliometric analysis files were cre-

ated for software that imports bibliometric mapping. The 

VOS viewer tool, a free, open-access program for scien-

tific bibliometry, was used to build the bibliometric net-

work. The bibliometric network was built and visualized 

using this program. 

III. RESULT 

III.1. Hyperspectral Images of Technology Based 
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The hyperspectral imaging sensors are widely rec-

ognized for their remarkable spectral resolution, despite 

their comparatively low spatial resolution. These sensors 

gather information about the spectral and spatial proper-

ties of every pixel. An array of numbers representing the 

intensities at a given position (x, y) over z distinct bands 

can be thought of as a pixel. A pixel's spectral signature at 

(x, y) is represented by a set of integers known as the pixel 

spectrum. The hyperspectral data acquired by means of a 

camera or sensor is shown in a three-dimensional repre-

sentation in Figure 4. 

 
Figure 4 presents a hyper-spectral data cube, as depicted in the image sourced from Mathworks® located in Natick, 

Massachusetts (USA) (Source: Mathworks®, Natick, Massachusetts (USA))

From 2020 to 2023, hyperspectral imaging will see a 

dramatic uptick in agricultural applications, as examined 

in this study. Evidence also suggests that these pictures 

can help pinpoint instances of plant stress due to things 

like pest infestations, nutrient deficits, or drought. You 

can use them to classify early nutrient deficiencies, find 

diseases before they show symptoms, assess soil proper-

ties and composition, use spectral signatures to differenti-

ate crops and weeds, keep an eye on pest infestations, 

study crop varieties, and figure out when to harvest using 

spectral analysis. Hyperspectral information can assist re-

searchers and ranchers with fining tune watering, prepar-

ing, and pesticide applications. Better soil the board, des-

ignated bug control, and distinguishing the ideal oppor-

tunity to gather for most extreme yield and quality can be 

accomplished using this data, as can the convenient medi-

ations to decrease pressure and further develop crop yield 

expectations. This, thus, will streamline asset use and di-

minish costs. 

Real-Case Studies 

Case models showing the use of hyperspectral imag-

ing and machine learning incorporate the development of 

grapevines for winemaking. Fine mold and fleece buildup 

are two of the most well-known grapevine diseases, and 

the two of them can prompt huge crop misfortunes. The 

visual examination used in conventional disease detection 

approaches is time-consuming and often not conducted 

quickly enough to prevent widespread contamination. In 

an early stage of a review conducted at a grape farm in 

Napa Valley, California, hyperspectral imaging linked to 

machine learning was utilized to identify and categorize 

grapevine illnesses. [27]. A 400-1000 nm unearthly reach 

camera mounted on a robot created the hyperspectral pho-

tographs. The capacity to recognize minute varieties in re-

flectance among solid and diseased grapevines was made 

conceivable by the extensive ghostly data these photo-

graphs provided for each pixel. To order the disease states 

in light of their ghastly marks, an irregular woods classi-

fier — a machine learning strategy eminent for its sturdi-

ness and exactness in handling high-layered information 

— was utilized. The marked examples of both solid and 

sick grapevines made up the preparation dataset. The re-

view's discoveries exhibited that hyperspectral imaging 

and machine learning together may productively recog-

nize and sort grapevine diseases at a beginning phase, 

which might bring down crop misfortunes and improve 

the viability of disease control in grape plantations. 

The project's result was an extremely accurate detec-

tion system with a rate of over 90%. This technique might 

identify diseases like powdery mildew before symptoms 

were apparent to the unaided eye. With this skill, vineyard 

managers may apply focused treatments only when re-

quired, cutting costs and usage of pesticides while enhanc-

ing the general health of the vineyard. Classifying three 

key crops grown worldwide—corn, soybeans, and winter 

wheat—is the subject of another noteworthy study [28]. In 
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the United States, these crops are widely grown, espe-

cially in the Midwest, which includes Ponca City, Okla-

homa. The study demonstrates how well cloud computing 

systems such as Google Earth Engine (GEE) work when 

processing large-scale hyperspectral information. enor-

mous-scale crop categorization jobs require the ability to 

analyze enormous amounts of data efficiently, which is 

made possible by this approach. The research opens up 

new avenues for the advancement of machine learning 

pipelines in the cloud that are tailored for hyperspectral 

data processing in agriculture. The ability of CNNs to cap-

ture complex spectral patterns allowed them to outperform 

other models in the results, which showed great accuracy 

in crop classification. Because DESIS data has a higher 

spatial resolution than Hyperion, it often gave higher ac-

curacy. Large datasets could be processed more effec-

tively thanks to cloud computing, which also greatly cut 

down on computation time. The study found that a potent 

tool for precision agriculture is the integration of hyper-

spectral imagery and machine learning on cloud plat-

forms, which enables more precise and scalable crop clas-

sification and improved crop management and yields. 

III.2. Identification of Plant Leaf Diseases Using 
Hyperspectral Images 

Hyperspectral imaging has garnered significant at-

tention as a means of tracking and forecasting agri-food 

output. By analyzing components and identifying biolog-

ical microbiological pollutants, these images facilitate the 

diagnosis of plant illnesses in agricultural crops. Highly 

developed sensors detect the radiation that plants emit or 

reflect over a wide range of spectral bands, yielding a 

wealth of information on features including the composi-

tion of the leaves and stems and the amount of nutrients in 

the soil. This information is vital for recognizing anoma-

lies and diseases in crops [16, 29]. 

Hyperspectral images are particularly useful for ce-

real crops like rice and wheat[30]. In these applications, 

the images are used to detect H2O levels and nitrogen con-

centrations in the plants [31]. For instance, the detection 

of wheat leaf rust, a common disease affecting wheat 

crops worldwide, has been improved by the development 

of deep learning-based tools that achieve around 84.1% 

prediction accuracy [32]. 

Researchers like those mentioned in ref. [33] have 

also explored the use of chlorophyll fluorescence together 

with hyperspectral images to identify Common illnesses, 

including wheat head blight caused by Fusarium, are prev-

alent. The studies conducted by researchers are carried out 

in both laboratory and field settings and employ a method 

that integrates chlorophyll fluorescence (CFI) during the 

initial inspection phase with hyperspectral imaging for 

monitoring the disease [33]. 

III.3. Machine Learning 

ML is an application of AI that improves efficiency 

in predicting and categorizing unknown data while imitat-

ing human learning processes by optimizing preexisting 

knowledge structures. Because machine learning can han-

dle large volumes of data, it is a very effective technique 

for processing hyperspectral photographs of crops in the 

context of agricultural disease identification [3,34]. 

Numerous investigators, as referenced in [35], have 

employed machine learning algorithms that integrate 

SVM and LDA approaches to evaluate the severity of Ver-

ticillium wilt disease in olive crops throughout a vast 300-

hectare area. The LDA technique used by the researchers 

yielded a general precision level of 59%, whereas the 

SVM approach produced a precision level of 79.2%. 

Chlorophyll content in crops such as potatoes has 

been estimated by previous studies using machine learn-

ing methods [36]. To illustrate the point, a study that 

looked at different models for measuring chlorophyll con-

tent in potato crops at different phases of growth also rec-

ommended an SVM-based model that was more accurate. 

Machine learning methods such as support vector ma-

chines (SVMs), random forests (RFs), and gradient boost-

ing (GB) are useful for analyzing reflectance spectra and 

vegetation indices in crop samples [37]. What follows is a 

segment with more information about some of the most 

popular algorithms. 

3.3.1. Supervised Machine Learning 

The term "supervised learning" describes the method 

by which a machine learning algorithm learns to make 

predictions using a set of labeled examples as input. A va-

riety of analysis and prediction tasks, including those in 

agriculture, can benefit from this method, which finds ex-

tensive application in machine learning. In such cases, su-

pervised machine learning models extract patterns linked 

to various crop characteristics, diseases, or quality param-

eters from tagged datasets that contain images, sensor 

data, or other pertinent information[38]. 

 

Artificial Neural Networks 

This The agricultural industry has seen a significant 

increase in the use of artificial neural networks (ANNs) 

for a variety of applications, such as crop quality evalua-

tion, production monitoring, and disease and pest identifi-

cation. In this situation, hyperspectral photos are very use-

ful since they can be used with artificial neural networks 

(ANNs) and hold a lot of information about crops. For in-

stance, hyperspectral pictures are employed in cereals like 

wheat to assess grain hardness, identify fungal infections, 

and assess damage from cold. The approach is frequently 

used to train ANNs, especially in supervised learning en-

vironments with classifiers that are recognized for their 

high levels of automation, simplicity, robustness, sensitiv-

ity, and accuracy in classification [25,41] 

 

Support Vector Machine(SVM) 
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The main function of support vector machines 

(SVMs) is to classify objects according to particular prop-

erties or features. The ultimate goal of SVMs is to find the 

best separation line that maximum divides objects into 

distinct classes. SVM-based techniques have been widely 

used for disease detection, crop classification, and classi-

fication of a wide range of food items [41, 42]. In a differ-

ent study, a pixel-based method for extracting hyperspec-

tral images was used to classify diseased corn kernels. The 

results showed that using the pixel technique improved the 

SVM's accuracy to 100%, indicating that the data derived 

from pixels was more complete and accurate than the data 

derived from objects [43]. 

K-Nearest Neighbor (K-NN) 

In machine learning, the k-nearest neighbors (K-

NNs) technique is a popular choice for regression and 

classification tasks. In contrast to other algorithms that 

need explicit model learning during training, the K-NNs 

method remembers the training instances and uses them to 

make predictions based on how similar the new input is to 

the data. Numerous applications have demonstrated the 

great efficacy and efficiency of this instance-based tech-

nique[44]. 

Classification and Decision Tree (CART) 

Decision trees provide a powerful and easily under-

stood machine learning technique that can be used for 

classification problems, especially in the agricultural do-

main when combined with hyperspectral imagery. The 

ability to distinguish between different crop varieties, 

identify stress or disease, and track crop health are some 

of its benefits. Decision trees are a useful tool for pro-

cessing multi-dimensional data obtained from hyperspec-

tral pictures because of their capacity to constantly seg-

ment the data space based on feature values. This ability 

is what makes decision trees effective [45]. 

Logistic Regression (LR) 

In machine learning, the k-nearest neighbors (K-

NNs) technique is a popular choice for regression and 

classification tasks. In contrast to other algorithms that 

need explicit model learning during training, the K-NNs 

method remembers the training instances and uses them to 

make predictions based on how similar the new input is to 

the data (characteristics). 

Linear Regression 

By collecting data at a broad range of wavelengths, 

hyperspectral imaging makes it possible to conduct a thor-

ough analysis of the chemical makeup of plants. The mo-

tivation behind this technique is to develop a straight line 

relationship utilizing at least one free factors, such un-

earthly groups, and a reliant variable, similar to crop yield, 

chlorophyll content, or the presence or nonappearance of 

disease [47]. 

Multivariate Linear Regression (MLR) 

A famous factual method for dissecting the connec-

tion between a few ward factors and no less than one free 

factor is multivariate straight relapse (MLR). This strategy 

goes past single-subordinate variable essential direct re-

lapse. Utilizing the range information from hyperspectral 

sensors, MLR can be utilized in crop examination through 

hyperspectral imaging to figure various huge agronomic 

attributes, including biomass, chlorophyll content, damp-

ness levels, and yield, among other quantitative character-

istics [29,48]. 

Deep Forest 

This machine learning approach is very new and has 

demonstrated excellent results in many fields, including 

remote sensing applications and picture categorization, in-

cluding hyperspectral imaging in agriculture. Unlike more 

conventional models like neural networks, deep forests 

use an ensemble learning technique inspired by decision 

trees, leading to efficient feature learning and representa-

tion due to their hierarchical structure. With this method, 

different crop kinds can be reliably classified by deep for-

ests using their spectral fingerprints that are taken from 

hyperspectral pictures[49]. 

Back Propagation Neural Network(BPNNs) 

Through the fusion of genetic algorithms (GAs) and 

neural networks, robust computational tools are created 

that significantly enhance the analysis of hyperspectral 

imaging in agriculture. By integrating these two method-

ologies, neural networks are capable of capturing intricate 

patterns while genetic algorithms refine model parame-

ters, resulting in a highly potent combination. This com-

bination holds great potential for advancing precision ag-

riculture applications by enabling the extraction of critical 

features and the discovery of intricate relationships. How-

ever, selecting the most appropriate model for specific re-

quirements requires careful assessment of factors such as 

computational costs, data needs, and interpretability con-

straints [25]. 

Linear Discriminant Analysis(LDA) 

A popular machine learning and statistical tech-

nique in multivariate analysis for supervised classification 

is called linear discriminant analysis (LDA). Finding a lin-

ear feature mixture that can successfully distinguish be-

tween different classes or groups within a dataset is its pri-

mary objective. According to references in, LDA has been 

extensively utilized in the categorization of agricultural 

products and in the hyperspectral image-based weed dis-

tinction in crops such as wheat and rice [35,50,51]. 

Naive Bayes Algorithm 

The Bayes theorem is used by the incredibly effi-

cient and straightforward generative machine learning 

classifier Naive Bayes to calculate the probability that 

connected events will occur. A lot of agricultural crops are 

classified using this method [52, 53]. Other researchers 

have also used hyperspectral cameras with sensors that 

record data in the visible, near-infrared (NIR), and short-

wavelength infrared (SWIR) regions to apply this technol-

ogy to the detection of blemishes or bruising on apples 

[45]. 
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In addition, studying the maturation of crops like 

rice using Naive Bayes classification methods [47]. Nitro-

gen characteristic calculations in this study rely heavily on 

the correlation between nitrogen characteristics and chlo-

rophyll in the visible and near-infrared (VNIR) spectrum, 

as detected by distant sensors. 

 

Modified Partial Lease Squares Regression (MPLSR) 

Modified partial least squares regression (MPLSR) 

is a popular measurable procedure for creating expectation 

models, especially while managing datasets that show un-

conventional qualities. Hyperspectral images, for in-

stance, can keep data in a few aspects because of the many 

phantom groups they regularly contain. MPLSR does an 

excellent job of preserving the most crucial information 

required for crop analysis while lowering the dimension-

ality of this data. This is accomplished by finding the spec-

tral bands and crop qualities that capture the most variance 

in the predictor and responder variables, respectively, as 

latent variables [54,55]. 

Light gradient Boosting Machine(LightBGM) 

Gradient boosting decision tree framework 

LightGBM is an open-source tool that has gained wide-

spread acclaim for its outstanding performance in a vari-

ety of machine learning tasks, such as regression, classifi-

cation, and ranking. It is especially helpful for examining 

hyperspectral photos of crops and has shown to be a vital 

resource for tasks involving regression and classification 

[56,57]. 

3.3.2. Unsupervised Machine Learning 

The goal of the research of unsupervised machine 

learning is to find hidden structures and patterns in data 

without the need for labels or predefined answers. When 

there are few labels or when revealing hidden information 

in the data is the goal, this method is quite helpful. Unsu-

pervised learning algorithms have made significant strides 

in the categorization of remote sensing photos in recent 

years and are now widely recognized as a successful sub-

stitute for traditional feature extraction techniques [58]. 

K-Means Clustering 

Intending to sort data into bunches with low be-

tween bunch closeness and high intra-bunch similitude is 

what's really going on with the k means technique. Utiliz-

ing the k-implies algorithm, the creators of reference [59] 

characterized an image of wheat crop ears in light of the 

average variety values in every super pixel zone. To build 

the accuracy of PLDA models in assessing potato quality, 

creators like Ref. [60] used the k-implies algorithm's un-

rivaled division. 

Hierarchical Clustering 

A popular technique in data mining called hierar-

chical clustering puts data points in a structure like a tree 

called a dendrogram. Subsequently, this technique clus-

ters the data points by combining or dividing groups ac-

cording to similarity or distance metrics. Finding inherent 

clusters in data and revealing hidden linkages is the main 

focus of hierarchical clustering methods. When it comes 

to crop monitoring using hyperspectral images, this strat-

egy is invaluable. It simplifies the understanding and man-

agement of agricultural fields by illuminating links and 

patterns in spectral data. Incorporating hierarchical cluster 

analysis and hyperspectral imaging into crop health mon-

itoring, crop type categorization, and early problem detec-

tion processes can greatly benefit researchers and agrono-

mists. In the long run, this will boost crop yields [25,61]. 

WEKAXMeans (WXM) 

The WEKAXMeans utility carries out the X-implies 

bunching procedure from the Weka machine learning soft-

ware suite. This strategy automatically determines the op-

timal number of bunches utilizing the data. Since the ob-

jective is often to partition or sort separate regions in view 

of spectral marks without the prerequisite for predefined 

class names, this capacity is exceptionally helpful while 

doing hyperspectral imaging of crops. In addition to other 

things, by gathering pixels with comparable spectral 

marks, WEKAXMeans can assist with recognizing re-

gions with solid plants, pushed plants, or various sorts of 

soil. For more on this, see [62]. 

Iterative Self-Organizing Data Analysis Technique 

(ISODATA) 

Without assuming anything about the distribution of 

the data, the ISODATA algorithm is a method for group-

ing data based on their commonalities. This approach isn't 

parametric. A field's plant composition can be thoroughly 

studied using hyperspectral imaging, which records infor-

mation over a broad spectrum of wavelengths. No pre-la-

beled information regarding the crops' condition is needed 

for this process [63,64]. 

Dimensionality Reduction 

The goal of "dimensionality reduction," a well-liked 

technique in machine learning and data analysis, is to re-

duce the number of features in a dataset while preserving 

their significance. The "curse of dimensionality," which 

increases computational complexity and the likelihood of 

overfitting, can be brought on by datasets that are too mul-

tidimensional and so difficult to manage [65]. 

Principal Component Analysis (PCA) 

A well-liked technique for analyzing multivariate 

data is principal component analysis (PCA), which entails 

selecting a smaller group of uncorrelated variables to rep-

resent a larger group of possibly associated variables. This 

method is frequently used to classify and diagnose dis-

eases in a variety of cereal kinds, including rice [43,66]. 

Singular Value Decomposition (SVD) 

The goal of this extremely sophisticated and adapt-

able instrument is to improve the hyperspectral picture 

processing and analysis for agricultural applications. It ef-

ficiently decreases the number of dimensions, minimizes 

noise, and recovers important information from the 
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images by using Singular Value Decomposition (SVD). 

This novel method greatly enhances the ability to identify 

crop types, track crop health, and forecast critical agricul-

tural attributes. This technology maximizes agricultural 

management by utilizing SVD, which raises crop produc-

tivity and quality [37,67]. 

Partial Least Squares Regression (PLSR) 

The partial least squares regression (PLSR) tech-

nique aims to determine a link between a set of independ-

ent factors and a set of dependent variables [68]. The very 

dependable technique of PLSR is widely used in cereal 

crops like wheat to identify micronutrients such as Ca, 

Mg, Mo, and Zn.[12]. To accomplish this goal, research-

ers frequently combine hyperspectral pictures with PLSR 

modeling. When working with high-dimensional datasets 

exhibiting strong correlations among predictor variables, 

PLSR proves to be an invaluable tool for dimensionality 

reduction and multivariate regression analysis [69]. 

Within principal component regression (PLSR) lies prin-

cipal component analysis (PCA). The output of PLSR is 

continuous, as opposed to the discrete output of linear re-

gression [70]. 

3.3.3. Deep Learning(DL) 

Deep learning is an advanced representation learn-

ing technique that makes use of an intricate artificial neu-

ral network with several layers of neurons. Although its 

use in agriculture is still relatively new, it is being used 

more and more for crop image classification, such as de-

termining the tomato plants' hardness level [71, 72]. Fur-

thermore, deep learning is used for applications such as 

weed detection in soybean fields [39]. This approach has 

shown exceptional categorization skills and surpasses tra-

ditional machine learning methods when it comes to ex-

tracting high-level abstract traits. The classification mod-

el's most sensitive wavelength range is the near-infrared 

(NIR) region, which is commonly used to evaluate plant 

health. A 5-layer convolutional neural network and over 

400 pictures were utilized to attain a detection accuracy of 

97.7 percent, according to a study published in the journal 

Remote Sensing [4]. 

Convolutional Neural Network (CNN) 

This is a very powerful and adaptable tool for crop 

hyperspectral picture analysis. It is helpful in a variety of 

precision agriculture applications because it is excellent at 

handling non-linear relationships, automatically detecting 

characteristics, and storing spatial information. Its black 

box characteristics, data requirements, and computing 

costs must be carefully considered. Convolutional neural 

networks (CNNs), which examine local patterns and cor-

relations between nearby pixels, are crucial for maintain-

ing spatial data. Particularly for cereals like rice, this geo-

graphical context is essential for identifying spatially 

spread crop problems [74–77]. 

Recurrent Neural Network(RNNs) 

Neural networks succeed at handling successive 

data, making them ideal for time-series analysis and other 

consecutive data sets like hyperspectral imaging in agri-

culture. Notwithstanding their standard relationship with 

tasks, for example, discourse acknowledgment and natural 

language handling, their usage in hyperspectral photog-

raphy empowers the assessment of spatial and temporal 

examples in crop data gathered over many spectral bands 

[11]. 

Long Short-Term Memory(LSTM) 

The LSTM model of recurrent neural networks 

(RNNs) is ideal for processes that involve both time-series 

information and sequential data. Hyperspectral imaging of 

crops is an extraordinary application for LSTM models 

because of their capacity to take utilization of the consec-

utive idea of the ghastly groups or changes in crop condi-

tions over the long haul. By recognizing pressure factors 

like irritations, diseases, and supplement lacks, LSTM can 

assess hyperspectral information to decide the strength of 

crops. In addition, LSTM can recognize patterns in the 

planning of crop wellbeing markers, which permits it to 

give supportive alerts and bits of knowledge. To work on 

the exactness of crop creation gauges, LSTM examina-

tions hyperspectral information over the long haul and 

records for changes in unearthly marks as the develop-

ment season advances [3]. 

Stacked Denoising Autoencoder(SDAE) 

A model made up of several sequentially organized 

stacked denoising autoencoders (SDAEs) is shown in the 

image. Each layer feeds its output into the one after it, al-

lowing it to recognize more abstract representations of the 

input data. In hyperspectral data analysis, SDAEs have 

shown to be a very effective deep learning method for ob-

taining useful features, especially for applications involv-

ing crop health monitoring and categorization [32]. 

Residual Attention Convolutional Neural Net-

works(RACNNs) 

A developing number of agricultural applications 

are making utilization of them, including weed ID, crop 

disease detection, and yield expectation. A neural network 

design with convolutional layers, wavelet analysis, and at-

tention methods accomplishes this. Especially for applica-

tions including image analysis and sign handling, this plan 

intends to extract important elements from data. Utilizing 

wavelet transforms, attention systems, and convolutional 

processes, this engineering can break down and interac-

tion data quickly for agricultural applications. [78,79]. 

Wavelet transforms and attention mechanisms are used 

in (WACNNs) 

In WACNNs, attention components and wavelet 

transforms are utilized to improve highlight extraction and 

lift model performance. Concentrates by have demon-

strated the way that involving WACNNs in agriculture 

can be especially useful for tasks like plant classification, 

soil dampness appraisal, and crop disease ID [80,81]. 
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One-Dimensional Convolutional Neural Network(ID 

CNN) 

This particular neural network architecture is in-

tended to handle text or time series data that are organized 

sequentially in a single dimension. This architecture is tai-

lored to handle one-dimensional input, in contrast to tra-

ditional convolutional neural networks (CNNs), which are 

generally used for two-dimensional data, such as photo-

graphs. 

In Figure 5, you can see a comprehensive overview 

of the machine learning algorithms that the authors em-

ployed to classify agricultural products and identify dis-

eases in them. Deep learning and conventional machine 

learning are the two main groups into which the classifi-

cation methods are split in this review article. Rather than 

conventional ML strategies that depend on pre-handling, 

deep learning procedures can naturally separate the most 

important classification qualities. Figure 5 shows the most 

famous ML and DL calculations utilized for disease de-

tection in crops and for arranging different agrarian infor-

mation focuses, for example, supplement levels, crop 

types, development, chlorophyll records, weed detection, 

nitrogen levels, and natural product development files. 

 

 

 
Figure 5 displays the machine learning algorithms that are utilized in crops, as depicted in the authors' source material. 

One powerful tool for material identification and 

classification is hyperspectral imaging, which gathers data 

over a broad range of spectral bands. However, in order to 

glean useful insights from such intricate datasets, specific 

methods are required. There are a number of machine 

learning models that work well with hyperspectral image 

processing, including support vector machines (SVMs), 

recurrent neural networks (RNNs), deep forests, k-nearest 

neighbors (k-NNs), extreme learning machines (ELMs), 

and backpropagation neural networks (BPNNs). When it 

comes to hyperspectral data processing, every model has 

its own set of pros and cons. It is vital to choose the ap-

propriate methodologies based on requirements and lim-

its, and the optimum model to utilize will vary depending 

on the application. In Table 2, you can see a summary of 

a few of the most common machine learning approaches 

to hyperspectral image processing.

 

Table 2 shows the machine learning algorithms' performance evaluation (according to the authors' source). 

Model Performance Advantages Drawbacks 

SVMs 

Support vector ma-

chines (SVMs) perform 

exceptionally well in 

high-dimensional situa-

tions for the classifica-

tion of hyperspectral 

imagery. 

Machine learning models, par-

ticularly those based on decision 

trees, are less likely to overfit 

when dealing with scenarios that 

have limited amounts of training 

data. 

The process of selecting parame-

ters, which involves determining 

the regularization parameter and 

kernel type, is computationally 

complex and demands considera-

ble thought. 
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Model Performance Advantages Drawbacks 

CNNs 

CNNs are particularly 

adept at handling image 

processing tasks, par-

ticularly in the domain 

of hyperspectral imag-

ing, by taking ad-

vantage of spatial and 

spectral relationships. 

Feature learning enables AI 

models to autonomously extract 

and learn hierarchical features 

from data, integrating spatial 

and spectral information while 

tolerating noise. This enhances 

classification accuracy, scalabil-

ity, and flexibility in network de-

sign, and facilitates transfer 

learning. 

Data Requirements: The effective 

training of CNNs necessitates a 

substantial amount of labeled data. 

Computational Resources: Train-

ing CNNs is a resource-intensive 

process that often necessitates the 

use of GPUs. 

BPNNs 

BPNNs offer a flexible 

and effective way to 

analyze hyperspectral 

imaging data, which 

may be applied to vari-

ous applications such 

as feature extraction, 

regression, classifica-

tion, and dimensional-

ity reduction. 

Bidirectional Probabilistic Neu-

ral Networks (BPNNs) are appli-

cable in hyperspectral imaging 

classification tasks, with the ob-

jective of assigning each pixel to 

predefined classes. BPNNs are 

trained on labeled hyperspectral 

data and can recognize the spec-

tral fingerprints of different ma-

terials or types of land cover. 

Transfer Learning can be uti-

lized with BPNNs that have 

been trained on substantial da-

tasets, such as natural images, by 

adapting the pre-trained models 

to hyperspectral data to fine-tune 

them for hyperspectral imaging 

tasks. 

Optimizing BPNNs requires fine-

tuning of hyperparameters such as 

layer count, neuronal density, 

learning rate, and activation func-

tions. Nevertheless, it is not always 

easy to determine the best combi-

nation; in fact, it frequently re-

quires a great deal of trial and error. 

RFs 

RFs are successful in 

handling both classifi-

cation and regression 

tasks in hyperspectral 

data processing by uti-

lizing an ensemble of 

decision trees. 

Nonlinearity Management: 

These models possess the ability 

to capture intricate connections. 

Feature Significance: These 

models offer insights into the 

significance of various spectral 

bands. Scalability: They are 

adept at handling extensive da-

tasets. 

Interpretability is a concern with 

these models as they are not as easy 

to understand as simpler ones. 

Overfitting might be an issue if not 

properly validated, but it is gener-

ally less of a problem compared to 

other methods. 

DF 

The potential of deep 

forests for analyzing 

hyperspectral images is 

significant due to their 

proficiency in manag-

ing intricate, multidi-

mensional data. 

Managing high-dimensional 

data, specifically hyperspectral 

images that contain numerous 

spectral bands, can be challeng-

ing. However, deep forests over-

come this issue by employing hi-

erarchical feature learning, 

which creates hierarchical repre-

sentations of spectral infor-

mation. Deep forests provide du-

rability in the face of noise in hy-

perspectral pictures due to 

Deep forests, especially for big hy-

perspectral imaging datasets, can 

result in lengthier training dura-

tions and higher processing de-

mands due to their multiple deci-

sion tree levels, which add to the 

model's complexity. Understand-

ing the prediction principles of 

deep forests can be difficult be-

cause, while they offer hierarchical 

data representations, they are more 

complicated and challenging to 
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Model Performance Advantages Drawbacks 

atmospheric conditions or sen-

sor constraints, which makes 

them suitable for real-world sce-

narios where data quality may 

vary. 

interpret than simpler models like 

decision trees. This complexity can 

be a disadvantage in applications 

that require high interpretability. 

RNNs 

and 

LSTM 

The optimal networks 

for sequential data are 

RNNs and LSTM net-

works, particularly for 

hyperspectral data that 

needs to be flexible in 

terms of spectral di-

mension. 

Since of their memory capacity, 

LSTM networks are useful for 

learning patterns across the 

spectral sequence since they can 

capture dependencies across 

spectral bands. 

Training can be challenging be-

cause of factors like vanishing gra-

dients, which can make them diffi-

cult to train. Additionally, they re-

quire a high amount of computa-

tional resources for both training 

and inference. 

k-NNs 

A popular non-para-

metric machine learn-

ing technique with a 

variety of uses, includ-

ing hyperspectral im-

age classification, is k-

nearest neighbors, or k-

NNs. 

k-NNs are known for their un-

complicated and approachable 

methodology. They use the label 

that is most frequently used by a 

sample's k-nearest neighbors to 

classify it. Since k-NN is a lazy 

learning algorithm, it can be im-

plemented more quickly and 

easily without the need for a sep-

arate training phase, in contrast 

to some other models that re-

quire lengthy training. 

The distances between each train-

ing sample and the test sample 

must be calculated by the algo-

rithm. This may incur significant 

processing costs, particularly when 

working with the big datasets used 

in hyperspectral imaging. Moreo-

ver, storing every training sample 

for distant computing could need a 

significant amount of memory. 

ELMs 

Hyperspectral image 

analysis can benefit 

greatly from the use of 

extremely learning ma-

chines (ELMs), as they 

offer a number of ad-

vantages over tradi-

tional techniques. 

ELMs offer several benefits, es-

pecially in terms of their ability 

to quickly train and process 

high-dimensional and computa-

tionally complex hyperspectral 

data. They can also perform well 

on unseen data, which makes 

them appropriate for real-world 

applications where adaptation to 

variances not present in the 

training data is necessary. 

Reduced Risk of Overfitting: 

The procedure of randomly as-

signing weights in ELMs re-

duces the likelihood of overfit-

ting, a prevalent problem in 

high-dimensional hyperspectral 

image analysis. 

The accuracy of Extreme Learn-

ing Machines (ELMs) can rival 

that of other methods, such as 

Support Vector Machines 

(SVMs), with substantially 

quicker training times. 

Vulnerability to Initialization: Ex-

treme Learning Machines (ELMs) 

are vulnerable to the effects of ini-

tialization due to their reliance on 

randomly generated input-to-hid-

den layer weights. Despite this ran-

domness accelerating the training 

process, it may cause inconsisten-

cies in the model's performance, 

making it essential to carefully ad-

just hyperparameters. 
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Model Performance Advantages Drawbacks 

PLSR 

Regression and dimen-

sionality reduction are 

two common uses for 

PLSR. However, it can 

also be used to achieve 

classification goals, es-

pecially in the field of 

hyperspectral imaging. 

Commonly used in hyperspec-

tral data reduction efforts, prin-

cipal component analysis (PCA) 

preserves important spectral de-

tails while reducing data dimen-

sionality. One advantage of prin-

cipal component analysis (PCA) 

is that it produces very simple 

and easy-to-understand models, 

in contrast to more complex ma-

chine learning methods like deep 

learning. Principal component 

analysis (PCA) is used to extract 

principle components, which are 

linear combinations of the origi-

nal spectral bands. They can be 

used by researchers to gain a bet-

ter understanding of the ways in 

which various spectral parame-

ters influence the target varia-

ble's prediction. 

The foundation of PLSR is the idea 

that there is a linear relationship be-

tween the target variable and the 

spectral data. Nevertheless, PLSR 

might not adequately represent a 

highly nonlinear underlying rela-

tionship, which could lead to less-

than-ideal predictions. In addition, 

overfitting can happen utilizing 

PLSR, especially in the event that 

the quantity of idle factors or parts 

isn't selected cautiously. Unfortu-

nate speculation execution on ob-

scure information is brought about 

by overfitting, which happens 

when the model distinguishes 

clamor in the preparation infor-

mation as opposed to the funda-

mental sign. Notwithstanding this, 

PLSR gives models that are more 

conceivable than those of some 

other machine learning draws near, 

such deep learning models. How-

ever, it very well may be hard to de-

cipher stowed away factor commit-

ments in high-layered datasets. 

Naïve 

Bayes 

An approach that is fre-

quently used to solve 

classification problems 

is the Naïve Bayes al-

gorithm. 

Naive Bayes is an extremely ef-

ficient method that works well 

with hyperspectral data since it 

can easily handle a lot of spectral 

bands. For quick analysis and 

prototyping, its simplicity also 

makes it easy to understand and 

apply. Naive Bayes is a good 

choice for hyperspectral imag-

ing since it can also handle high-

dimensional data without issue. 

By estimating class probabili-

ties, this approach also provides 

probabilistic forecasts, which 

are useful for making decisions 

and determining the accuracy of 

predictions. Naive Bayes has 

many benefits, yet there are situ-

ations when it shouldn't be uti-

lized because it doesn't always 

produce reliable results. 

The naive assumption that each 

feature is independent is often 

made in hyperspectral data analy-

sis. Due to the strong correlation 

across spectral bands, this assump-

tion might not be true, which would 

result in less than ideal perfor-

mance when features are depend-

ant. When feature dependencies are 

high, naive Bayes models may also 

find it difficult to capture compli-

cated linkages and interactions be-

tween spectral bands, which will 

lead to lower performance than 

more sophisticated models. 

CART 

Decision trees are a 

well-liked supervised 

learning method that 

A highly interpretable model 

type that works well for inter-

preting hyperspectral imaging 

Overfitting of decision trees occurs 

when their depth is not sufficiently 

regulated. When evaluating 
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has several uses in the 

fields of classification 

and regression. 

data is the decision tree. Their 

capacity to give experiences into 

direction is worked with by their 

various leveled structure por-

trayal. Likewise, choice trees 

can order the most instructive 

unearthly groups, which assists 

with include determination and 

dimensionality decrease, and 

hence proficiently handles high-

dimensional data. These high-

dimensional data sets include 

things like hyperspectral im-

ages. 

unknown data, a deeply rooted tree 

may absorb random fluctuations 

from the training set, resulting in 

inadequate generalization. 

Because decision trees have a high 

degree of variability, slight varia-

tions in the training set can result in 

various trees being produced for 

the same dataset. Decision trees 

may be less trustworthy as a result 

of their sensitivity to changes in the 

data. 

 

Table 3 provides an extensive overview of the 

important research on the use of hyperspectral imaging 

and machine learning to identify illnesses in agricultural 

crops, including oilseeds and cereals. While many articles 

focus on cereal crops, such rice and wheat, it is difficult to 

define a particular wavelength range for disease detection 

in these crops. For example, the wheat disease Fusarium 

head blight (FHB) lacks a distinct spectral signature; yet, 

alterations in the plant and afflicted tissues can produce 

recognizable patterns in hyperspectral photos. However, 

some research does use particular wavelength ranges [59]. 

 

 

Table 3 provides a concise overview of the diagnostic techniques employed to detect diseases in cereals and oilseeds, as 

described by the authors.

Ref Crops Disease 
Bandwidths 

(nm) 
Algorithms 

[83] Wheat Frost and drought stress (280 to 500) PLSR 

[42] Wheat Fusarium head blight (400 to 2500) SVM 

[59] Wheat Fusarium head blight (600 to 1100) SVM, ANN and LR 

[59] Wheat Fusarium head blight (400 to 750) CNN 

[84] Wheat Fusarium head blight (450 to 950) RF algorithm 

[85] Wheat Fusarium head blight 
(1100, 1197, 

1308, 1394) 
PLSDA 

[86] Wheat Fusarium head blight (941, 876, 732) CARS 

[79] Wheat Fusarium head blight Variable RACNN 

[87] Wheat Yellow rust (400 to 1000) SVM 

[88] Wheat Rice weevil (866.4 to 1701) LDA, SVM and PCA 

[89] Rice Insect damage Variable PCA 
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Ref Crops Disease 
Bandwidths 

(nm) 
Algorithms 

[90] Rice Sheath blight (726 to 930) 
Support vector machine 

(SVM) 

[91] Rice Nitrogen deficiency (550 to 690) LTSM and MLR 

[92] Rice Rice false smut 
(874.41 to 

1734.91) 
PCA 

[93] Corn GR (400 to 900) k-NN), RF and SVM 

[94] Corn Cold damage (395 to 885) CNN 

[95] Corn Aflatoxin contamination Variable PLSDA 

Detection of plant diseases in legumes has been exten-

sively studied; studies on drought stress in chickpea, for 

instance, have shown a range of responses, as outlined in 

Table 4 [96]. When evaluating hyperspectral data, re-

searchers typically focus on particular spectral signatures 

and areas of interest to determine drought stress in plants. 

This is due to the fact that drought stress modifies how 

plants absorb and reflect certain wavelengths of light. 

 

Using near-infrared (NIR) wavelengths, scientists 

have studied diseases such as basal stem rot, prevalent in 

oil palm and other crops, as reported in [97]. Diseases 

such as late blight in potatoes or bacterial wilt in peanuts 

can be identified in a similar way, with the sensitivity of 

NIR wavelengths changing significantly throughout the 

disease's progression [99]. 

Wavelength ranges—400–1000 nm for the first au-

thor and 900–1700 nm for the second—are the primary 

determinants of citrus fruit quality. The second author 

used optimal clustering for spatial data reduction to gen-

erate quantitative maps of certain quality attributes in 

fresh oranges. Evaluation of citrus fruits, such as oranges, 

is the primary focus of these writers [100,101].

 

Table 4 presents an overview of methodologies employed in detecting diseases in other crops, as reported by the authors. 

Reference Crops Disease Bandwidths (nm) Algorithms 

[102] Potato Alternaria solani (550 to 750) PLS-DA and SVMs 

[98] Potato Late blight (450 to 950) 3D-CNN 

[60] Potato Bruised (450 to 1000) PCA 

[103] Strawberry Leaves (359 to 1020) ELM, k-NN  and SVM  

[104] Leek White tip (800 to 870) SVM 

[64] Tea Anthracnose (450 to 950) ISODATAs 

[105] Chickpea Ascochyta blight (666 to 840) DA and SVM 

[99] Peanut Bacterial wilt (730 to 900) ANOVA and MLP 

[106] Cucumber Powdery mildew (400 to 900) SVM 

[107] Tobacco Spotted wilt virus (400 to 1000) RT and CART 

[108] Citrus Fungal infection (325 to 1100) PCA 
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Reference Crops Disease Bandwidths (nm) Algorithms 

[109] Citrus 
Diagnosis of citrus 

Hangdogging 
(450 to 1023) LS-SVM 

[66] 
Green-peel 

citrus 
Thrips defect (523, 587, 700, 768) PCA 

[110] Tomato Firmness estimation (400 to 1000) 1D convolutional ResNet 

[110] Tomato Early blight (380 to 1023) ELM 

[35] Olive Verticillium wilt 
(650 to 720 680 to 800 

8000 to 15000) 
SVM and LDA 

[111] Grape Leafroll 
(690, 715, 731, 1409, 

1425, 1582) 
LS-SVM 

[44] Apple Marssonina blotch (800 to 1100) OSP 

[45] Apple Bruising 
(400 to 1000) 1000 to 

2500 
LDA and SVM 

[46] Apple Bitter pit detection (550 to 1700) PLSR 

[57] Beet Seed Ggrmination (1000 to 2500) RF, SVM, and LightGBM 

 

Table 5 provides a concise summary of significant research focusing on the categorization of agricultural crops 

such as cereals and oilseeds, including studies that classify the various types of crops [80,112], as well as those that 

specifically identify crop varieties like wheat or rice [75,76]. 

 

In research and evaluation of nitrogen content, 

works like ref. [113] have examined the deficiency of ni-

trogen in rice crops. Furthermore, hyperspectral images 

are employed to assess chlorophyll content, as demon-

strated in another study [33]. 

Machine learning techniques are used in crops like corn to 

estimate biomass content [51] and determine soil moisture 

levels [114]. Similarly, research has been conducted on 

identifying early mosaic virus in soybeans [115,116].

 

Table 5 Presents a concise overview of the various techniques utilized for multiple tasks related to cereals and oilseeds, 

as reported by the authors. 

Ref Crops Disease Bandwidths (nm) Algorithms 

[28] Various Classification (400 to 2500) 
RF, SVM, NB and 

WXM 

[80] Various Classification (400 to1000) WA-CNN 

[112] Various Classification (400 to 2500) CNN 

[50] Wheat 
Wheat and weed discrimina-

tion 
(400 to 1000) PLS-DA and SVM 

[40] Wheat Kernel presence (990 to 1200) PLS-DA 

[12] Wheat Predicting micronutrients (375 to 1000) PLSR 
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Ref Crops Disease Bandwidths (nm) Algorithms 

[30] Wheat Nitrogen and water status 
(400 to 850 95 to 

1750) 
ANOVA 

[117] Rice Rice variety (400 to 1000) PCAN 

[76] Rice Rice varieties (400 to 950) CNN 

[118] Rice Rice vigor (873 to 1374) CNN 

[119] Rice 
Chlorophyll content estima-

tion 
(450 to 950) 

PLSR, SVM and 

ANN 

[75] Rice Rice classification (450 to 950) CNN 

[113] Rice Nitrogen stress Variable CNN 

[76] Rice Rice classification (320 to 1100) CNN 

[47] Rice Nitrogen content Variable 
PLSR, SVM and 

ANN 

[120] Rice Rice flour intensity (500 to 900) SMLRs and RF 

[121] Rice Rice seeds vigor (874.41 to 1734.91) DCNN and PCA 

[91] Rice Nitrogen concentration Variable MLR and LSTM 

[122] Corn Corn seedling recognition (400 to 1000) CNN 

[51] Maize Biomass estimating (450 to 950) RF 

[53] Maize seed Moisture content (930 to 2548) PLSR and LS-SVM 

[123] Maize Hardness for maize (399.75 to 1005.8) PLSR 

[114] Corn Maize Moisture detection (968.05 to 2575.05) CNN and LSTM 

[112] 
Corn Soybean Wheat 

Alfalfa 
NDVI and MNDWI (400 to 2500) CNN 

[124] Maize Crop traits in maize Variable 
RF, PLS, SPA and 

CARS 

[125] Maize Water and nitrogen status (325 to 1075) ANOVA 

[126] Barley Nutrient concentration (1000 to 2500) PLS 

[127] Barley Phenology of barley (395 to 793) SVMs 

[128] Barley Phenolic compounds (950 to 1760) PCA) and SVMs 

[129] Sorghum Sorghum purity (935 to 1720) PCA 

[115] Soybean Soybean crop variables (350 to 2500) PLS 

[130] Soybean 
soybean seed varieties Iden-

tification 
(874 to 1734) CNNs 
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Ref Crops Disease Bandwidths (nm) Algorithms 

[131] Oil Palm Weight and ripeness 
(560, 680, 740 and 

910) 
MLR 

[132] Oil Palm Fruit grading (750 to 910) ANN 

[133] Peanut Peanut maturity (400 to 1000) LMM 

Studies have looked into a range of approaches for differ-

ent goals, as Table 6 shows. Certain research works con-

centrate on classification tasks, including identifying be-

tween several aromatic coffee kinds [134, 135]. Citrus 

fruits, blueberries, and grapes are among the fruits whose 

maturity is evaluated by other studies using machine 

learning algorithms [108,136,137]. Machine learning 

algorithms are used in the case of citrus crops to detect 

deterioration early on, particularly in fruits like oranges, 

which enables an early estimate of their ripeness. Produc-

ers might use this information to save costs by planning 

their crops ahead of time and influencing future market 

pricing [138].

 

Table 6 presents a summary of techniques used for various tasks related to other crops, as reported by the authors. 

Refer-

ence 
Crops Disease 

Bandwidths 

(nm) 
Algorithms 

[139] Lettuces Phenotypes (400 to1000) RNNs and LSTM 

[135] Coffee Coffee bean varieties (973 to 1630) WT and SVM 

[135] Coffee Coffee bean varieties (973 to 1629) 
MA, WT, SVM, and 

EMD 

[134] Coffee Consistency (408 to 1008) PLS 

[140] Weed Indicator of competition for water Variable ANOVA 

[136] 
Blue-

berry 
Growth stages Variable SAM and MLR 

[141] 
Blue-

berry 
Internal quality (400 to 100) PLS 

[142] 
Straw-

berry 
Strawberry ripeness 

(503, 528, 604, 

715) 
SVM and CNN 

[143] Apple Bruise region (675 to 960) PCA and RF 

[31] Apple Bruise damage (930 to 2500) 
k-NN, LDA and 

SVM 

[55] Grape 
Predicting sugar, total flavonoid, and total an-

thocyanin contents 
(411 to 1000) MLR and PLS 

[144] Grape Pigment composition (400 to 1000) RTM 

[137] Grape Maturity of grapes (900 to 1700) MPLS 

[145] Banana Banana grading (1069.21) CNN and MLP 

[146] Potato Water content (1400 to 1450) PLS and CARS 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024 
 

ISSN: 2347-8578                 www.ijcstjournal.org                       Page 56 

Refer-

ence 
Crops Disease 

Bandwidths 

(nm) 
Algorithms 

[101] Orange Orange quality (900 to 1700) ANN 

[147] Orange Pectin content (900 to 2500) PCA and PLSR 

[138] Orange Distinction between green oranges and leaves (100 to 2500) ANOVA 

[108] Citrus Early decay (325 to 1100) PCA 

[148] Tea Green tea quality (379 to 1040) k-NN and SVM 

[149] Peanut Peanut maturity (545, 660, 790) PLS 

IV. DISCUSSION  

The major reason for this audit paper is to analyze 

the advantages and uses of HSI in precision agriculture, 

explicitly comparable to the ID and classification of crop 

diseases. Highlighting the job of artificial intelligence (ar-

tificial intelligence) in improving crop wellbeing, guaran-

teeing food security, and creating supportable agricultural 

practices, it draws attention to the machine learning meth-

ods used to distinguish and arrange crop issues. The moti-

vation behind this survey is to consolidate existing 

knowledge and accomplishments in the field by zeroing in 

on these areas and offering an exhaustive grasp of how 

HSI and machine learning could upset agricultural crop 

disease recognizable proof and control. The documentary 

review's findings suggest that hyperspectral imaging and 

genetics together have a lot of potential to advance agri-

cultural applications and research. While genomics sheds 

light on the genetic composition and characteristics of 

crops, hyperspectral imaging collects fine-grained spec-

tral data that represents the physiological and biochemical 

condition of plants [150]. Combining these technologies 

allows researchers to identify features associated with 

stress tolerance, nutrient utilization efficiency, and disease 

resistance by connecting certain genetic markers with 

spectral signatures. This can make it easier to create crop 

types with desired features through precision breeding 

techniques. Hyperspectral data, for instance, can be used 

to non-invasively track the expression of particular genes 

in various environmental settings, which can speed up 

breeding program selection and increase crop productivity 

and resilience. 

Modern imaging techniques, such hyperspectral im-

aging, make it possible to track plant health and stress re-

actions in real time under a variety of climatic circum-

stances. Through the integration of this data with climate 

models, these technologies facilitate the prediction of crop 

responses to future climate scenarios, hence assisting in 

the development of agricultural practices that are resilient 

to climate change. Furthermore, minor alterations in plant 

physiology that occur before obvious signs of stress 

brought on by drought, extremely high or low tempera-

tures, or other climatic conditions can be identified using 

hyperspectral imaging. By using this data, early warning 

systems for farmers can be created, allowing them to take 

prompt action to lessen the consequences of unfavorable 

weather conditions. 

Global agricultural practices and the advancement 

of sustainable agriculture are significantly impacted by the 

application of cutting-edge technologies in agriculture, 

particularly through precision farming [151]. Precision 

agriculture optimizes the use of resources like water, fer-

tilizer, and pesticides while fostering sustainability and 

productivity through the use of data analytics, satellite im-

aging, and a range of sensors. Furthermore, precision ag-

riculture enables the early detection of pest infestations 

and crop diseases through continuous monitoring and so-

phisticated data analysis. By identifying minute changes 

in crop health that could be signs of an impending disease, 

technologies such as remote sensing and AI-driven ana-

lytics enable farmers to take preventive action before se-

rious harm is done. 

Unmanned aerial vehicles are one type of hyper-

spectral platform (UAVs). UAVs have several advantages 

over airplanes, including as quicker access to target loca-

tions, lower operating costs, and excellent spatial resolu-

tion for smaller areas. They are able to obtain detailed spa-

tial information from low-altitude high-resolution image 

capturing. However, UAVs are subject to regulatory re-

strictions, have a limited flight time and range, and are 

weather-dependent. 
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Figure 6 The following instances show how hyperspectral platforms can be used in diverse contexts for practical pur-

poses. (a) depicts an airplane with the Cubert S185 hyperspectral camera installed, whereas (b) uses the DJI M600 

[37,152] for the same purpose. In (c), the setup for hyperspectral measurements consists of a visible and near-infrared 

(VNIR) spectral camera, a shortwave infrared (SWIR) spectral camera, a diffuser with halogen lamps, a belt conveyor 

with photocells to control movement direction, a system to regulate the belt conveyor speed, and a stepper motor. (d) 

features the Specim, Finland-based SisuCHEMA hyperspectral imaging system, while (e) showcases the Imperx IPX-2 

M 30 spectral camera [45,114,132]. (f) displays the FX 10 system made by Specim in Finland, and (g) shows the Imspec-

tor V9 spectrograph made by Specim, which is a (prism-grating-prism) system

. 

Lab hyperspectral platform: Advantages: Field-

based sensors can be used by researchers to collect high-

resolution data, allowing for the accurate examination of 

small features or samples. Non-destructive in situ meas-

urements are provided by these sensors, which are perfect 

for inspecting delicate materials or monitoring items in 

their native environments. Furthermore, field-based sen-

sors are lightweight and flexible, making it possible for 

researchers to effectively gather data in a variety of 

environments. Researchers can reduce the impact of out-

side elements like wind and sunshine fluctuations by set-

ting up the platform in a controlled space, either within or 

beneath a movable tent. 

Drawbacks: Field-based systems face constraints 

in data collection due to their capacity to gather infor-

mation over a narrow area at any given moment. To ana-

lyze larger areas, multiple datasets must be collected and 

integrated, which can be a protracted process. The process 

of collecting data can be arduous and require significant 
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effort, especially when considering the size and intricacy 

of the target region. 

Field hyperspectral platform: Advantages: Field 

platforms exhibit a notable edge over hyperspectral sen-

sors mounted on satellites or aircraft, as they attain excep-

tionally high spatial resolutions. Unlike these sensors, 

field platforms capture data at much finer scales, enabling 

in-depth examination of minute features or specimens. For 

example, field platforms can be utilized to scrutinize indi-

vidual leaves on a plant or fissures in a rock. These porta-

ble and versatile systems are designed for ease of transport 

and deployment in various field conditions. 

Drawbacks: These systems have a high resolution, 

but their coverage area is constrained. Although the 

amount of space they may study at once is restricted, stud-

ying large fields might need compiling and combining 

several datasets, which can take a while. Furthermore, 

field measurements may be impacted by environmental 

variables like shifting sunshine or high winds, which high-

lights the significance of meticulous planning and consid-

eration of meteorological conditions. 

The agreement between investigations using hyper-

spectral cameras and artificial intelligence techniques is 

shown in Figure 7. According to the findings, hyperspec-

tral image usage in agriculture increased dramatically be-

tween 2020 and 2023, especially for crops like wheat, soy-

beans, corn, and rice as well as fruits like oranges and ap-

ples. This expansion is important for weed detection, crop 

type classification, nutrient level classification, and crop 

disease detection. Which method is the most accurate or 

appropriate has not yet been established. Nonetheless, re-

search has demonstrated that the machine learning and 

deep learning methods most commonly applied in cereals, 

oilseeds, vegetables, and fruits are the models SVMs, RFs, 

PLS, LSTM, LMMs, CNNs, RNNs, and ANNs. The 

choice of wavelengths throughout a broad spectrum of the 

electromagnetic spectrum depends on the goals of specific 

research projects. The selection of appropriate wave-

lengths is influenced by the specific disease being studied 

as well as the spectral characteristics of the plants and 

pathogens involved in the investigation. Additionally, 

combining various spectral band analysis techniques can 

increase the precision of crop monitoring and disease di-

agnosis. The enormous amount of data gathered from hy-

perspectral photos is processed using deep learning, an al-

ternative that has been embraced by numerous writers. 

The agreement between research projects using hyper-

spectral cameras and artificial intelligence techniques is 

shown by the graph in the above image. According to the 

findings, hyperspectral image usage in agriculture in-

creased dramatically between 2020 and 2023, especially 

for crops like wheat, soybeans, corn, and rice as well as 

fruits like oranges and apples. This expansion is important 

for weed detection, crop type classification, nutrient level 

classification, and crop disease detection. Which method 

is the most accurate or appropriate has not yet been estab-

lished. Nevertheless, research has demonstrated that the 

most common machine learning and deep learning ap-

proaches utilized in crops such as cereals, oilseeds, vege-

tables, and fruits include SVMs, RFs, PLS, LSTM, 

LMMs, CNNs, RNNs, and ANNs. The goals of certain in-

vestigations dictate the selection of wavelengths from a 

vast array of electromagnetic spectrum bands. The spe-

cific illness being studied, together with the spectral char-

acteristics of the plants and viruses involved, dictate the 

wavelengths that are considered suitable. For more precise 

crop monitoring and disease identification, it is recom-

mended to combine multiple spectral band analysis ap-

proaches. One solution that has gained support from many 

authors is deep learning, a technique for handling the 

enormous amount of data obtained from hyperspectral 

photos. 
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Figure 7. A scientific network map has been created to 

illustrate the most commonly used keywords in the papers 

reviewed. The lines on the map represent the strength of 

co-occurrence links among the terms (Source: Authors). 

When it comes to comparing hyperspectral imaging 

to RGB imaging, it is important to note that both have their 

own unique advantages in the field of agriculture 

[153,154,155]. Although hyperspectral imaging has sev-

eral benefits over traditional RGB imaging, these ad-

vantages are best summarized in Table 7. 

 

Table 7. Summary of the benefits of employing hyperspectral images instead of RGB images in agriculture, as detailed 

by the authors.

Advantage Hyperspectral Imaging RGB Imaging 

Spectral 

Resolution 

The device captures a vast range of light, covering 

numerous closely spaced wavelengths from the vis-

ible to the near-infrared spectrum and beyond, 

which enables the identification of minute varia-

tions in the characteristics of plants. 

The sentence you provided captures light in 

three distinct color bands (RGB), which limits 

the amount of information that can be obtained 

about vegetation. 

Plant Health 

Analysis 

Detailed 

Can pinpoint particular wavelengths that signal 

plant health problems, like nutrient shortages, water 

scarcity, illness, or infestations, frequently before 

they are perceptible to the naked eye.. 

Offers minimal information, primarily relying 

on visible color changes that typically manifest 

in the later stages of plant health issues. 

Enhanced 

Crop Moni-

toring 

Enhances agricultural precision through precise ap-

plication of fertilizers and pesticides, while simulta-

neously promoting the growth and development of 

plants, thus enabling the use of precision agriculture 

techniques. 

Paperpal co-pilot can offer fundamental 

knowledge about the different stages of plant 

growth and overall health, but it is unable to 

deliver precise spectral data required for metic-

ulous monitoring. 

Crop and 

Soil Differ-

entiation 

Identifies soil types, crop varieties, and specific 

crop species by examining their unique spectral pat-

terns. 

Frequently has difficulty distinguishing be-

tween visually similar soils and crops, as its 

spectral data is limited. 

Yield Pre-

diction 

Increases the accuracy of agricultural yield predic-

tions by examining the spectral properties 

Provides the less precise, broader estimates 

based on visible growth. 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 4, Jul - Aug 2024 
 

ISSN: 2347-8578                 www.ijcstjournal.org                       Page 60 

Advantage Hyperspectral Imaging RGB Imaging 

associated with plant biomass, chlorophyll concen-

trations, and other growth-related factors. 

Environ-

mental 

Monitoring 

By analyzing specific spectral characteristics, this 

study aims to investigate the impact of environmen-

tal stressors including pollution, soil contamination, 

and water quality issues. 

The capacity to recognize intricate environ-

mental circumstances is restricted. 

Table 7. Summary of benefits of employing hyperspectral 

images over RGB images in agriculture, as outlined by the 

authors. 

V. CONCLUSION  

According to this study, hyperspectral imaging has 

a number of advantages, one of which is the capacity to 

monitor crops non-invasively—that is, without causing 

any harm or physical touch. Conventional imaging tech-

niques are unable to yield the exact and comprehensive 

information regarding crop conditions that this technology 

offers. Additionally, it increases productivity through the 

facilitation of precision agriculture methods and the opti-

mization of resource consumption, which results in lower 

costs and higher crop yields. 

Hyperspectral imaging technology has its advantages 

and disadvantages. On one hand, it can provide 

detailed and valuable information about crop health 

and soil properties, which can lead to more informed 

decision-making. On the other hand, the high cost of 

sensor equipment and data processing infrastructure 

can pose a significant barrier to its widespread 

adoption. Furthermore, for effective interpretation, 

the enormous volumes of data produced by this 

technology call for sophisticated knowledge and 

powerful computers. To guarantee correct results, 

additional operational difficulties including weather, 

sensor calibration, and data collection procedures 

must also be properly handled. When paired with 

artificial intelligence, hyperspectral imaging in 

agriculture appears to have a bright future despite 

these obstacles. It is anticipated that developments in 

sensor and data analytics technologies will increase the 

efficiency and accessibility of this technology, 

revolutionizing agricultural methods and promoting 

sustainable farming in the process. There is a great 

chance that technology will transform the agriculture 

sector as costs come down and data processing 

becomes more effective. 

 

Nomenclature and Abbreviations 

Analysis of Variance(ANOVA), Artificial Neural 

Network(ANN), Backpropagation Neural Net-

work(BPNN), Classification And Regression 

Tree(CART), Convolutional Neural Network(CNN), 

Competitive Adaptive Reweighting Algorithm(CARS), 

Discriminant Analysis(DA), Deep Convolution Neural 

Network(DCNN), Empirical Mode Decomposi-

tion(EMD), Extreme Learning Machine(ELM), K-Near-

est Neighbor(k-NN), Linear Discriminant Analy-

sis(LDA), Light Gradient Boosting Machine(LightGBM), 

Long Short-Term Memory(LSTM), Chlorophyll Fluores-

cence Imaging(CFI), Logistic Regression(MA), Multivar-

iate Linear Regression(MLR), Multilayer Percep-

tron(MLP), Modified Partial Least Squares Regres-

sion(MPLS), Naive Bayes(NB), Near-Infrared 

Light(NIR), Difference Vegetation Index(NDVI), Or-

thogonal Subspace Projection(OSP), Principal Compo-

nent Analysis(PCA), Partial Least Squares Regres-

sion(PLSR), Partial Least Squares(PLS), Partial Least 

Squares Discriminant Analysis(PLSDA), Random Forest 

Algorithm(RFA), Random Forest Algorithm(RA), Resid-

ual Attention Convolution Neural Network(RACNN), Re-

current Neural Networks(RNNS), Spectral Angle Map-

ping(SAM), Singular Value Decomposition(SVD), Step-

wise Multiple Linear Regression(SMLR), Stacked De-

noising Autoencoder(SDAE), Short-Wave Infra-

red(SWIR) 
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