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ABSTRACT 
In the age of extensive data and artificial intelligence, protecting confidential data while allowing the valuable insights of 

machine learning has become of utmost importance. Privacy-preserving machine learning (PPML) is an emerging discipline 

that use cryptographic methods to protect data throughout the training and inference stages of machine learning models. The 

cryptographic techniques used in PPML, such as homomorphic encryption, safe multi-party computation, differential privacy, 

federated learning with cryptographic upgrades, and zero-knowledge proofs, are thoroughly examined in this review paper. The 

analysis of each technique includes an evaluation of its fundamental principles, practical uses, and the difficulties it encounters 

in achieving a balance between privacy, security, and computational efficiency. By examining the latest advancements in 

cryptographic methods for PPML, this review seeks to inform and direct future research efforts toward developing more robust 

and scalable privacy-preserving solutions for machine learning across various application domains. 

Keywords — Machine learning models, Privacy-preserving machine learning (PPML), Cryptographic techniques, Homomorphic 

encryption, Secure multi-party computation, Differential privacy, Federated learning, Zero-knowledge proofs, Data security, 

Artificial intelligence. 
 

I.     INTRODUCTION 

With the ongoing transformation of industries through 

machine learning [1, 5, 6, 9, 17, 22, 27], the need for 

protecting sensitive information has grown more crucial. In 

industries such as healthcare, banking, and personal data 

analytics, where the protection of privacy is of utmost 

importance, the potential for data breaches or unauthorized 

access can result in significant effects. Privacy-preserving 

machine learning (PPML) ensures the security of data used in 

training and inference, even in potentially untrusted situations. 

Cryptography [3, 23, 24] is essential in PPML since it gives 

the required tools to protect data at every stage of the machine 

learning process. Methods such as homomorphic encryption 

[6], secure multi-party computation [18], and differential 

privacy [9] enable the processing of machine learning models 

on encrypted data, preventing the underlying information from 

being revealed. In addition, federated learning [5] and zero-

knowledge proofs [4] provide novel methods for collectively 

training models or validating computations while preserving 

the confidentiality of sensitive data. This paper provides an 

overview of the present condition of cryptographic techniques 

employed in Privacy-Preserving Machine Learning (PPML), 

with a specific emphasis on their fundamental concepts, real-

world applications, and the barriers they encounter. Through 

the analysis of these methods, our objective is to emphasize 

the significance of cryptography in the creation of reliable and 

effective machine learning systems. Additionally, we aim to 

identify specific areas that require additional investigation and 

innovation to meet the changing requirements of privacy and 

security in the era of artificial intelligence. 

The organization of the paper is as follows: 

 

 

Section 2 provides a detailed overview of Homomorphic 

Encryption (HE), including its principles, applications, and 

associated challenges. 

Section 3 explores Secure Multi-Party Computation 

(SMPC), outlining how this technique facilitates secure 

computations among multiple parties while preserving privacy. 

Section 4 covers Differential Privacy (DP), focusing on its 

methods for safeguarding individual data contributions and 

maintaining model utility. 

Section 5 discusses Federated Learning with Privacy 

Enhancements, examining how cryptographic techniques are 

employed to secure collaborative model training across 

decentralized data sources. 

Section 6 addresses Zero-Knowledge Proofs (ZKP), 

explaining their use in verifying computations without 

disclosing sensitive information. 

Section 7 concludes the paper with a summary of the 

findings and suggestions for future research and 

advancements in privacy-preserving cryptographic methods 

for machine learning. 

 

 

II. HOMOMORPHIC ENCRYPTION (HE) [6, 7, 

12, 13, 15, 28] 
Homomorphic Encryption (HE) is a cryptographic method 

that enables computations to be carried out on encrypted data 

without requiring prior decryption. This characteristic makes 

HE particularly effective in privacy-preserving machine 

learning (PPML) and other situations where data privacy is of 

utmost importance.  

 

2.1 Key Concepts of Homomorphic Encryption 
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2.1.1 Encryption and Decryption 

Similar to conventional encryption techniques, Homomorphic 

Encryption (HE) entails the process of encrypting plain data to 

generate cipher data. However, Homomorphic Encryption 

(HE) systems enable specific operations, such as addition and 

multiplication, to be executed on the encrypted data. Once 

decrypted, the result of these operations is identical to that 

obtained when the operations were conducted on the plaintext. 

 

2.1.2 Types of Homomorphic Encryption 

 
• Partially Homomorphic Encryption (PHE): Only 

supports a singular type of operation (either addition 

or multiplication) on encrypted data. ElGamal 

encryption and the RSA cryptosystem are two 

examples. 

• Somewhat Homomorphic Encryption (SHE): 

Performs both addition and multiplication operations, 

but is limited to a specific level of complexity. 

• Fully Homomorphic Encryption (FHE): Allows 

for infinite multiplication and addition on 

ciphertexts. The strongest type is FHE, but it also 

requires the most processing power. 

 
2.2 Applications 

• PPML utilizes the HE technique to train models on 

encrypted datasets, ensuring the preservation of data 

privacy throughout the processing phase. 

 

• Users have the option to delegate the storage and 

processing of encrypted data to cloud services, 

ensuring that the data remains secure and 

confidential during computations.  

 

• HE enables secure querying of encrypted databases, 

ensuring that both queries and results are kept 

encrypted, thus ensuring data privacy. 

 

2.3 Challenges: 

 

• Performance:  Specifically, FHE is slower than 

conventional encryption techniques due to its large 

computational overhead. This creates an important 

difficulty to its broad adoption.  

• Complexity: For developers, this can be a barrier 

because of the mathematical complexity of HE 

schemes, which demands extensive understanding 

and execution. 

• Security and Key Management: Homomorphic 

encryption key security is an important problem that 

requires careful consideration, particularly in 

distributed systems. 

 

III. SECURE MULTI-PARTY 

COMPUTATION (SMPC) [8, 14, 18, 29] 
Secure Multi-Party Computation (SMPC or MPC) is a 

cryptographic technique that allows many participants to 

collaboratively calculate a function using their inputs while 

ensuring the privacy of those inputs. The fundamental concept 

is that no individual party acquires any additional knowledge 

beyond their own input and the output of the computation, 

regardless of their lack of trust in one another. 

 

3.1. Key Concept of Secure Multi-Party Computation 

(SMPC) 

• Semi-Honest (Passive) Adversary: Assumes that 

parties observe the protocol exactly while attempting 

to extract more details from the messages they 

receive. 

• Malicious (Active) Adversary: Assumes that parties 

have the ability to depart from the protocol in a 

random manner in order to obtain additional 

information or disrupt the calculation process. 

 

3.2. Security Guarantees:  

• Privacy: Ensures the confidentiality of the parties' 

inputs. 

• Correctness: Ensures the accuracy of the 

computation's results, even in the presence of 

malevolent behavior by certain parties. 

• Fairness: Prevents one party from learning the result 

while others do not by guaranteeing that either all 

parties receive the output or none do. 

3.3.  Applications of SMPC 

• Privacy-Preserving Data Analysis: SMPC is used 

in cooperative research and joint statistics collection 

to analyze data from various sources without 

disclosing the underlying data. 

• Financial Computations: Parties may compute 

financial functions such as auctions, benchmarking, 

or risk analysis without disclosing their confidential 

information. 

• Secure Voting: Without disclosing specific votes, 

SMPC can guarantee that the votes are counted 

accurately. 

 

IV. DIFFERENTIAL PRIVACY (DP) [1, 2, 10, 

11] 

Differential Privacy (DP) is a robust mathematical framework 

that guarantees the confidentiality of people in a dataset while 

enabling the retrieval of valuable statistical insights. It ensures 

that the output of a computation does not disclose an 
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excessive amount of information about a particular individual, 

even if an adversary has access to other data sources. 

 

4.1 Key Concepts of Differential Privacy 

• Privacy Guarantee: Differential Privacy guarantees 

that the inclusion or exclusion of any individual's 

data in a dataset has minimal impact on the result of 

a computation. This creates a challenge for an 

opponent to deduce whether the dataset contains the 

data of a certain individual. 

• Noise Addition: Usually, noise is added to the output 

of a function that is computed on the dataset in order 

to establish differential privacy. 

• Composition:  Since differential privacy is 

composable, when numerous calculations are carried 

out on the same dataset, the privacy guarantees 

deteriorate gradually. The total privacy loss is the 

sum of the 𝜖 values from each computation. 

 

4.2 Applications of Differential Privacy 

• Machine Learning: Differential privacy is utilized 

to train models on sensitive data, guaranteeing that 

the predictions made by the model do not disclose 

any information about individual training examples. 

• Data Sharing: Organizations have the ability to 

distribute collective statistics or artificially generated 

datasets that ensure differentiated privacy, enabling 

data analysis without affecting the privacy of 

individuals. 

 

V. FEDERATED LEARNING WITH 

PRIVACY ENHANCEMENTS [ 5, 16, 17, 19, 20] 
Federated Learning (FL) is a distributed method of machine 

learning in which numerous clients (such as devices or 

organizations) work together to train a common model while 

maintaining their data locally. This approach enables training 

of models using data from multiple sources without the 

requirement to consolidate the data, hence improving privacy 

and minimizing expenses associated with data transfer.  

 

5.1 Key Concepts of Federated Learning 

• Decentralized Data Storage: The training data in 

FL is stored on the client devices, which might be 

edge servers, cellphones, or Internet of Things 

sensors. Each device trains the model locally, and 

only sends model changes (gradients or model 

weights) to a central server. This decentralized 

method guarantees that the original data remains on 

the device, greatly improving privacy. 

• Federated Averaging: The basic FL algorithm, 

Federated Averaging, was first presented by 

McMahan et al. (2017). To create a single global 

model, it aggregates the locally learned models from 

several devices. Local computations are made by 

each device, and the central server averages them to 

update the global model. 

• Cryptographic Enhancements: Combining 

federated learning with SMPC, HE, or DP to further 

protect privacy. 

5.2 Applications of Federated Learning with Privacy 

Enhancements 

• Healthcare: Without disclosing private information, 

hospitals and research centers can work together to 

train machine learning models with patient data. 

• Finance: Financial institutions should engage in 

collaborative efforts to develop models that can 

identify fraudulent transactions by sharing valuable 

insights derived from local data, while ensuring the 

protection of sensitive consumer information. 

• Smartphones and Mobile Applications: FL is 

employed to train models for predictive text input, 

autocorrect, and personalized keyboard 

recommendations on a large scale, while ensuring 

that user typing data is stored on the device. 

• Federated Learning with privacy enhancements can 

be used in any field where confidentiality and data 

sensitivity are important considerations. In 

companies handling sensitive data, it creates 

potential for innovation by enabling collaborative 

learning while maintaining privacy. 

 

VI. ZERO-KNOWLEDGE PROOFS (ZKP) [4, 

14, 21, 25, 26] 
Zero-Knowledge Proofs (ZKP) are cryptographic techniques 

that enable a party (the "prover") to prove to another party (the 

"verifier") that they are aware of a particular piece of 

information without actually disclosing the details. 

Researchers Goldwasser, Micali, and Rackoff established this 

hypothesis in the 1980s. 

6.1 Key Concepts of Zero-Knowledge Proofs 

• Zero-Knowledge Property: The fundamental 

concept of ZKP is that the verifier is not provided 

with any knowledge of the actual information, except 

for the fact that the prover is aware of it. 

• Completeness: If the assertion is true and both the 

prover and the verifier agree to the protocol 

appropriately, the verifier will be convinced of its 

truth. 
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• Soundness: There is very little chance that any 

dishonest prover could persuade the verifier that the 

statement is true if it is false. 

• Zero-Knowledge: Other than knowing that the 

statement is true, the verifier gains no new 

information. This indicates that no further 

information that might be utilized to deduce the 

secret is revealed by the prover. 

6.2 Types of Zero-Knowledge Proofs 

• Interactive Zero-Knowledge Proofs: In this format, 

the prover and the verifier engage in a sequence of 

exchanges that result in the proof. The prover is 

asked to do specific tasks or give specific answers by 

the verifier, which the prover could only complete if 

they are aware of the secret. 

• Non-Interactive Zero-Knowledge Proofs (NIZK): 

NIZK does not require back-and-forth 

communication, in contrast to interactive proofs. 

Rather, the prover produces an evidence that 

everyone can independently verify. This is very 

beneficial for blockchains and other distributed 

systems. 

6.3 Applications of Zero-Knowledge Proofs 

• Privacy-Preserving Data Sharing: ZKPs can be 

employed to authenticate sensitive data without 

disclosing the actual data, particularly in situations 

involving the exchange of confidential information 

such as medical records or financial data. 

• Voting Systems: ZKPs can help protect the integrity 

and confidentiality of electronic voting systems. 

Voters may confirm they voted without disclosing 

their vote, keeping both the accuracy and privacy of 

the voting process. 

• Authentication: Zero-knowledge proofs (ZKPs) can 

be employed in secure authentication systems, 

allowing users to authenticate their identity without 

disclosing their password or any other confidential 

data. 

VII. CONCLUSION 

In this survey, we examined different cryptographic 

techniques that have a crucial impact on improving privacy in 

machine learning. Given the growing importance of data 

privacy, methods such as Homomorphic Encryption (HE), 

Secure Multi-Party Computation (SMPC), Differential 

Privacy (DP), Federated Learning with Privacy Enhancements, 

and Zero-Knowledge Proofs (ZKP) provide effective solutions 

to protect sensitive information while learning. Every 

approach possesses unique advantages and constraints, which 

vary according to the particular application circumstances. 

Homomorphic Encryption (HE) enables computations to be 

performed on encrypted data, ensuring secure data processing 

without exposing the original information. On the other hand, 

Secure Multi-Party Computation (SMPC) enables secure 

collaborative computations among several participants 

without compromising the privacy of the data. Differential 

privacy (DP) offers a strong method for protecting individual 

data contributions while preserving the effectiveness of the 

overall model.  

               Federated Learning guarantees that data is 

distributed, and the learning process is additionally 

strengthened with cryptographic upgrades. Zero-knowledge 

proofs (ZKPs), however, provide robust mechanisms for 

validating computations while keeping confidential 

information undisclosed. Although cryptographic approaches 

have the potential for various applications, they also come 

with problems, including the demand for significant 

processing resources, complications in communication, and 

the requirement to find a balance between privacy and utility. 

Hence, continuous research is vital to enhance these 

techniques, rendering them more effective, adaptable, and 

feasible for real-world use. With the ongoing development of 

privacy-preserving machine learning, it is crucial to promptly 

tackle the current constraints of these cryptographic 

techniques. Future research ought to focus on the development 

of hybrid systems, enhancing the efficiency of cryptographic 

protocols, and investigating novel strategies that can more 

effectively address the varied privacy needs of machine 

learning applications. 
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