
International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 33

Optimizing Energy Efficiency and Quality of Service in Cluster-

Based Iot Networks: A Comparative Analysis of Genetic Algorithm,

Ant Colony Optimization, Particle Swarm Optimization, Lion

Optimization, And Firefly Algorithms

S. Bharathi [1], Dr. D. Maruthanayagam [2]

[1] Research Scholar, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri, Tamilnadu, India

[2] Dean Cum Professor, PG and Research Department of Computer Science, Sri Vijay Vidyalaya College of Arts & Science,

Dharmapuri, Tamilnadu, India.

ABSTRACT

The proliferation of Internet of Things (IoT) devices has underscored the need for efficient routing strategies to enhance energy

efficiency and quality of service in network communications. This paper investigates the performance of five optimization

algorithms Genetic Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Lion Optimization,

and Firefly Algorithms in a cluster-based IoT network architecture. We evaluate these algorithms based on key performance

metrics including End-to-End Delay, Packet Delivery Ratio (PDR), Routing Overhead, Throughput, Energy Consumption,

Scalability, Idle Listening Time and Latency. Using a simulation-based approach, we analyze and compare the effectiveness of

each algorithm in improving routing efficiency and network performance. This paper results highlight the strengths and

limitations of each algorithm, offering insights into their suitability for various IoT applications. This investigation provides a

comprehensive evaluation of how these optimization techniques can be leveraged to address the challenges of energy consumption

and service quality in IoT networks, paving the way for more effective and scalable IoT solutions.

Keywords: Internet of Things (IoT), Cluster-Based IoT Network , Optimization Algorithms , Genetic Algorithms (GA) , Ant

Colony Optimization (ACO) , Particle Swarm Optimization (PSO), Lion Optimization ,Firefly Algorithms , Energy Efficiency

and Quality of Service (QoS).

1. INTRODUCTION
The Internet of Things (IoT) represents a transformative

shift in technology, connecting billions of devices across

diverse domains from smart homes to industrial

applications. The efficient management of these devices

relies heavily on the underlying network infrastructure,

particularly in routing and data transmission. As IoT

networks expand, traditional routing strategies struggle to

meet the growing demands for energy efficiency and quality

of service (QoS). Addressing these challenges is crucial for

sustaining the performance and scalability of IoT systems.

Routing in IoT networks involves navigating complex

topologies with varying node densities and energy

constraints [1] [2]. The efficiency of routing algorithms

directly impacts key performance metrics such as energy

consumption, latency, and packet delivery ratio.

Consequently, optimizing these algorithms is essential for

ensuring that IoT networks operate efficiently and reliably

[3].

In cluster-based IoT networks, where nodes are organized

into clusters to enhance communication efficiency and

manageability, routing strategies must balance multiple

factors. These include minimizing energy consumption,

reducing end-to-end delay, maximizing throughput, and

ensuring high packet delivery ratios [4]. Traditional routing

approaches often fail to adapt to dynamic network

conditions and energy constraints effectively. Recent

advancements in optimization techniques offer promising

solutions to these challenges. Genetic Algorithms (GA), Ant

Colony Optimization (ACO), Particle Swarm Optimization

(PSO), Lion Optimization, and Firefly Algorithms have

demonstrated potential in various optimization contexts.

However, their comparative effectiveness in the specific

context of IoT routing has not been thoroughly explored.

This paper seeks to address this gap by evaluating these

algorithms in terms of their impact on QoS parameters

in a cluster-based IoT network.

The primary objective of this research is to evaluate and

compare the performance of GA, ACO, PSO, Lion

Optimization, and Firefly Algorithms in optimizing

routing within a cluster-based IoT network. This analysis

focuses on key performance metrics, including End-to-End

Delay, Packet Delivery Ratio (PDR), Routing Overhead,

Throughput, Energy Consumption, Idle Listening Time,

Scalability, and Latency. By analyzing these metrics, this

paper aims to identify the most effective optimization

techniques for enhancing energy efficiency and overall

service quality in IoT networks.

This research makes several significant contributions to the

field of IoT network optimization:

▪ Comparative Analysis: Provides a detailed

comparative analysis of five advanced optimization

algorithms in the context of cluster-based IoT routing.

▪ Performance Metrics: Evaluates the algorithms based

on a comprehensive set of QoS parameters, offering

insights into their strengths and limitations.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 34

▪ Practical Insights: Offers practical recommendations

for selecting and implementing optimization algorithms

to improve IoT network performance.

▪ Future Directions: Identifies potential areas for future

research and development in IoT routing optimization.

By addressing these aspects, the paper aims to advance the

understanding of how different optimization techniques can

be applied to enhance the efficiency and reliability of IoT

networks.

II.SYSTEM MODEL

2.1. Cluster-Based IoT Networks

Cluster-based IoT networks are a prevalent architecture

designed to enhance the efficiency and scalability of large-

scale IoT deployments. In this architecture, the network is

organized into clusters, each managed by a central node

known as the Cluster Head (CH). The remaining nodes

within a cluster are referred to as Member Nodes (MNs).

This hierarchical organization simplifies the management of

network resources, reduces energy consumption, and

improves data aggregation and transmission efficiency [5].

The main advantages of cluster-based architectures include:

• Reduced Communication Overhead: By aggregating

data at the cluster level before transmission, cluster-

based networks reduce the number of messages sent

to the base station or gateway.

• Energy Efficiency: CHs handle data collection and

routing tasks, while MNs primarily focus on sensing

and transmitting data to the CH, which can extend the

battery life of individual nodes.

• Scalability: Clustering helps manage network size by

reducing the number of direct communications

between nodes, making it easier to scale the network as

the number of devices increases.

Cluster formation in IoT networks is typically dynamic and

involves several key steps [6]:

• Cluster Formation: Nodes determine their roles (CH or

MN) based on predefined criteria, such as node energy

levels, proximity, and network density. Various

algorithms, such as LEACH (Low-Energy Adaptive

Clustering Hierarchy), are employed to form clusters

and elect CHs.

• Cluster Maintenance: To ensure efficient network

operation, clusters are periodically re-evaluated and

reorganized. This helps accommodate changes in node

energy levels, mobility, or network topology.

• Data Aggregation and Transmission: CHs collect data

from MNs, aggregate it to reduce redundancy, and

then forward it to the base station or gateway. This

aggregation minimizes the amount of data that needs to

be transmitted over long distances, reducing energy

consumption and network congestion.

In an IoT network model comprising 10 nodes labeled n1

through n10, we organize the nodes into clusters to manage

communication efficiently. Specifically, the network is

divided into two clusters: Cluster 1 includes nodes n1, n2,

n3 (acting as the Cluster Head, or CH), n4, and n5, while

Cluster 2 encompasses nodes n6, n7 (CH), n8, and n9. The

sink node, n10, serves as the base station that collects data

from both clusters. During network initialization, nodes are

deployed, and cluster heads are selected based on criteria

such as residual energy and node degree. Nodes then

associate with the nearest or most suitable CH. In this

model, intra-cluster communication occurs directly between

nodes and their respective CHs, with nodes n1, n2, n4, and

n5 communicating with CH n3, and nodes n6, n8, and n9

communicating with CH n7. For inter-cluster

communication, CHs n3 and n7 aggregate data from their

clusters and transmit it to the sink node n10.

Figure 1: IoT network model for 10 nodes

2.2. Key Components of Cluster-Based IoT Networks

1. Cluster Heads (CHs)

o Role: Act as coordinators within their respective

clusters. They collect data from Member Nodes

(MNs), perform data aggregation, and relay

aggregated data to the base station or gateway.

o Responsibilities: Manage intra-cluster

communication, handle data aggregation, and reduce

the amount of data transmitted to the base station.

2. Member Nodes (MNs)

o Role: Collect and transmit data to the Cluster

Head.

o Responsibilities: Sense the environment or

application-specific parameters, send raw data or

pre-processed data to the CH.

3. Base Station/Gateway

o Role: Acts as a central point for receiving data

from multiple clusters and providing connectivity to

external networks or the Internet.

o Responsibilities: Aggregate data from all

clusters, process data, and interface with external

systems or applications.

4. Communication Links

o Intra-Cluster Links: Communication between

MNs and CHs within the same cluster.

o Inter-Cluster Links: Communication between

different clusters via CHs or directly to the base

station.

2.3 Benefits of Cluster-Based Architecture

Cluster-based IoT networks offer several benefits:

• Improved Energy Efficiency: By reducing the

distance that data must travel and centralizing data

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 35

aggregation at the CH, energy consumption is

significantly reduced.

• Enhanced Network Lifetime: Effective clustering

can balance energy consumption across the

network, prolonging the overall network lifetime.

• Reduced Latency: Aggregation at the cluster level

can decrease the time required to process and

transmit data, thereby reducing latency.

• Increased Network Throughput: By minimizing

direct communication among nodes and aggregating

data efficiently, the network can handle higher

data rates.

Despite the advantages, cluster-based IoT networks also

face several challenges [7]:

• Cluster Head Selection: Choosing the optimal CH

is crucial for maintaining network efficiency and

prolonging node life. Inefficient CH selection can

lead to uneven energy consumption and reduced

network performance.

• Scalability Issues: As the number of nodes grows,

maintaining optimal cluster configurations and

managing communication overhead becomes

increasingly complex.

• Data Aggregation: While data aggregation helps

reduce communication overhead, it also

introduces challenges in ensuring data accuracy and

timely delivery.

2.4 Applications and Use Cases

Cluster-based IoT networks are widely used in various

applications, including:

• Smart Cities: Managing sensor data for traffic

control, environmental monitoring, and energy

management.

• Healthcare: Monitoring patient health through

wearable sensors and aggregating data for analysis.

• Industrial IoT: Collecting and analyzing data from

machinery and equipment to improve operational

efficiency and predictive maintenance.

In cluster-based IoT networks offer a scalable and

energy-efficient approach to managing large-scale IoT

deployments. However, effective cluster management and

optimization are essential for addressing the inherent

challenges and ensuring optimal network performance.

III. OPTIMIZATION ALGORITHMS IN IOT

ROUTING

In IoT networks, routing algorithms are crucial for

determining how data is transmitted from source to

destination efficiently. Optimizations algorithms help

improve various routing aspects such as energy

consumption, delay, throughput, and reliability. Below, we

explore several optimization algorithms and their

applications to IoT routing.

3.1. Genetic Algorithms (GA) for IoT Routing

Genetic Algorithms (GA) are optimization algorithms

inspired by natural selection. They work by evolving a

population of candidate solutions over several

generations to find the best solution for a given problem

[8] [9] [10]. In the context of IoT routing, GA can be used to

optimize routing paths, reduce energy consumption, and

improve network performance.

GA Algorithm for IoT Routing

Step 1. Initialization

▪ Generate Initial Population: Create an initial

population of candidate solutions. Each individual (or

chromosome) represents a potential routing path

through the IoT network.

- Chromosome Representation: A chromosome

could be represented as a sequence of nodes in

the network (e.g., [N1, N3, N5, and N2]).

Step 2. Fitness Evaluation

▪ Evaluate Fitness: Calculate the fitness of each

chromosome based on a fitness function. The fitness

function evaluates how well the routing path performs

based on criteria such as energy consumption, delay,

and packet delivery ratio.

- Fitness Function :

- Cost Function : For routing, the cost

function might include energy consumption

E(C), delay D(C), and routing overhead R(C):

 Where wE, wD, and wR are weights for energy, delay,

and routing overhead, respectively.

Step 3. Selection

▪ Select Parents: Choose parent chromosomes based

on their fitness scores. Chromosomes with higher

fitness values are more likely to be selected.

- Selection Probability : The probability pi of

selecting chromosome i can be computed as:

Where N is the population size.

Step 4. Crossover

▪ Perform Crossover: Create offspring by combining

parts of two parent chromosomes. Crossover helps to

explore new areas of the solution space.

- Single-Point Crossover : Given two parent

chromosomes P1 and P2, and a crossover point

c:

Offspring 1: [P11,P12,...,P1c,P2c+1,P2c+2,...,P2n]

Offspring 2: [P21,P22,...,P2c,P1c+1,P1c+2,...,P1n]

Step 5. Mutation

▪ Apply Mutation: Introduce random changes to

offspring chromosomes to maintain diversity in the

population and avoid local optima.

- Mutation Operation : For a chromosome C =

[N1, N2, ..., Nn]), a mutation might involve

swapping two nodes Ni and Nj:

Cmutated = [N1, ..., Nj, Ni, ..., Nn]

Step 6. Replacement

▪ Replace Old Population: Update the population by

replacing some or all of the old chromosomes with new

offspring.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 36

- Replacement Strategy : One common strategy

is to use elitism(superiority), where the best

chromosomes from the current population are

kept in the new population:

New Population=Top k Best Chromosomes+Offspring

 where k is the number of elite chromosomes.

Step 7. Termination

▪ Check for Termination Condition: The algorithm

terminates when a stopping criterion is met, such as

a maximum number of generations or convergence of

the fitness value.

- Stopping Criterion:

If Generation≥Max Generations or Convergence Criterion i

s met, then stop.

 Example Application: Routing Optimization in a

Smart Agriculture Network

In a smart agriculture IoT network, the goal is to find

optimal routing paths for sensor data to minimize energy

consumption and delay. Here’s how GA can be applied:

▪ Initialization: Generate an initial population of possible

routing paths from sensor nodes to the central server.

▪ Fitness Evaluation: Compute the fitness of each path

based on energy consumption (using battery

consumption models), transmission delay, and routing

overhead.

▪ Selection: Use roulette wheel selection to choose the

best paths for crossover.

▪ Crossover: Apply single-point crossover to combine

different routing paths to generate new potential paths.

▪ Mutation: Randomly swap nodes in the routing

paths to introduce diversity.

▪ Replacement: Replace less fit paths with new offspring

paths while retaining some of the best paths from the

previous generation.

▪ Termination: Continue for a predefined number of

generations or until the fitness improvement plateaus.

Genetic Algorithms provide a robust method for optimizing

routing in IoT networks by iteratively evolving solutions

based on a fitness function. By employing techniques such

as crossover and mutation, GA explores a wide solution

space and finds effective routing paths that balance multiple

performance criteria.

3.2. Ant Colony Optimization (ACO) for IoT Routing

Ant Colony Optimization (ACO) is inspired by the foraging

behavior of ants and uses pheromone trails to guide the

search for optimal solutions [11] [12] [13]. In the context of

IoT routing, ACO can be used to find efficient routing

paths that minimize energy consumption, delay, and other

metrics.

ACO Algorithm for IoT Routing

Step 1. Initialization

o Initialize Parameters:

o Pheromone Matrix (τ): Initialize the pheromone

matrix, which represents the pheromone levels on each

edge of the graph. The initial pheromone value is

often set to a small constant.

τij(t=0)=τ0

Where τ0 is a small positive constant.

o Heuristic Information (η): Compute heuristic

information, such as inverse of the cost or distance

between nodes.

ηij=1/ dij

Where dij is the distance or cost between nodes

i and j.

o Ants and Iterations: Set the number of ants Nants and

the number of iterations T.

Step 2. Solution Construction

o Ant Movement: Each ant constructs a solution

(routing path) by moving from the source node to the

destination node using a probabilistic rule based on

pheromone levels and heuristic information.

▪ Transition Probability: The probability Pij

that an ant k moves from node iii to node j is

given by:

▪ Where α and β are parameters controlling

the influence of pheromone and heuristic

information, respectively. The sum is taken

over all allowed nodes i that can be visited

next.

Step 3. Fitness Evaluation

o Evaluate Solutions: After all ants have constructed

their solutions, evaluate the fitness of each solution

based on the objective function, such as total energy

consumption or delay.

▪ Objective Function: For a routing path Pk ,

the cost Ck can be calculated as:

where Eij is the energy consumption on edge

(i,j), Dij is the delay on edge (i,j), Rij is the

routing overhead on edge (i,j), and wE , wD,

wR are weights for these metrics.

Step 4. Pheromone Update

o Local Pheromone Update: Update the pheromone

level on the edges used by ants during the construction

of solutions.

▪ Local Update Rule: τij(t)=(1−ρ)⋅τij(t)+ρ⋅τ0

Where, ρ is the local pheromone evaporation

rate.

o Global Pheromone Update: After all ants have

completed their tours, update the pheromone levels

globally based on the quality of the solutions found.

▪ Global Update Rule:

τij(t+1)=(1−ρ)⋅τij(t)+Δτij

Where, Δτij is the amount of pheromone

deposited by the ants.

 It is typically calculated as:

Where, Δτij is the amount of pheromone

deposited by the ants. It is typically calculated

as:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 37

 Where, Q is a constant related to the amount

of pheromone deposited.

Step 5. Check for Convergence

o Termination Condition: Determine if the algorithm

should terminate based on convergence criteria or the

maximum number of iterations.

▪ Stopping Criterion:

If Iteration≥T or convergence criterion is met, t

hen stop.

Step 6. Solution Extraction

o Best Solution: After termination, extract the

best solution (routing path) based on the

lowest cost found during the iterations.

Example Application: Routing Optimization in a Smart

Agriculture Network

In a smart agriculture IoT network, ACO can be used to

find optimal paths for data transmission from sensors to a

central server:

▪ Initialization: Set up pheromone values on network

edges and heuristic information based on distance or

cost.

▪ Solution Construction: Ants explore paths from sensor

nodes to the central server, guided by pheromone levels

and distance.

▪ Fitness Evaluation: Calculate the cost of each path

based on energy consumption, delay, and overhead.

▪ Pheromone Update: Update pheromone levels to

reinforce better paths and evaporate pheromone on less

optimal paths.

▪ Check for Convergence: Continue for a predefined

number of iterations or until the improvement in

solution quality stops.

▪ Solution Extraction: Select the path with the lowest

cost as the optimal routing path.

Ant Colony Optimization (ACO) provides an effective

method for solving routing problems in IoT networks by

simulating the foraging behavior of ants. By iteratively

updating pheromone levels and exploring different

paths, ACO can find efficient routing solutions that balance

multiple performance metrics, such as energy consumption,

delay and reliability.

3.3. Particle Swarm Optimization (PSO) for IoT Routing

Particle Swarm Optimization (PSO) is inspired by the social

behavior of birds and fish. It involves a swarm of particles

that explore potential solutions and adjust their positions

based on their own experiences and the experiences of their

neighbors[14] [15] [16]. In the context of IoT routing, PSO

can be used to optimize routing paths to minimize metrics

such as energy consumption, delay and routing overhead.

Step-by-Step PSO Algorithm for IoT Routing

Step 1. Initialization

o Initialize Particles: Create an initial swarm of particles

where each particle represents a potential routing path

in the IoT network.

Formula:

▪ Position Vector: Each particle’s position xi is

a vector representing a routing path. For

example:

xi=[N1,N2,...,Nn]

▪ Velocity Vector: Each particle’s velocity vi

represents the change in position:

vi=[vi1,vi2,...,vin]

▪ Initialization: Randomly initialize xi and vi

for each particle.

Step 2. Fitness Evaluation

o Evaluate Fitness: Calculate the fitness of

each particle based on the objective function.

The fitness function evaluates how well the

routing path performs in terms of energy

consumption, delay, and routing overhead.

▪ Fitness Function: For a routing path

xi, the cost Ci can be calculated as:

Ci=wE⋅E(xi)+wD⋅D(xi)+wR⋅R(xi)

Where:

• E(xi) is the energy

consumption of the path,

• D(xi) is the delay,

• R(xi) is the routing overhead,

• wE , wD , and wR are

weights for these metrics.

Step 3. Update Personal Best

o Update Personal Best Position: Each particle updates

its personal best position pbest,i if its current position is

better than its previous personal best.

▪ Personal Best Update:

 Where Cbest,i is the cost of the best

position found by particle.

Step 4. Update Global Best

o Update Global Best Position: The best position among

all particles in the swarm is updated to the global best

gbest.

▪ Global Best Update:

Where Cbest,global is the cost of the best

position found by any particle.

Step 5. Velocity and Position Update

o Update Velocity: Each particle updates its velocity

based on its personal best and the global best positions.

▪ Velocity Update:

vi(t+1)=ω⋅vi(t)+c1⋅r1⋅(pbest,i−xi(t))+c2⋅r2⋅(gbest

−xi(t))

Where:

▪ ω is the inertia weight,

▪ c1 and c2 are cognitive and social

coefficients,

▪ r1 and r2 are random numbers between 0

and 1.

o Update Position: Each particle updates its position

based on its velocity.

▪ Position Update:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 38

xi(t+1)=xi(t)+vi(t+1)

Ensure that the updated position is valid according

to the routing constraints.

Step 6. Check for Convergence

Step 7. Termination Condition: Determine if the

algorithm should terminate based on convergence

criteria or the maximum number of iterations.

▪ Stopping Criterion:

If Iteration≥T or convergence crit

erion is met, then stop.

Convergence can be checked by

observing if the change in global

best fitness or positions falls

below a threshold.

Step 8. Solution Extraction

o Best Solution: After termination, the global

best position gbest represents the optimal

routing path.

Example Application: Routing Optimization in a Smart

Agriculture Network

In a smart agriculture IoT network, PSO can be used to find

the optimal routing paths for data transmission from various

sensor nodes to a central server:

1. Initialization: Set up particles with random initial

positions and velocities, representing possible routing

paths.

2. Fitness Evaluation: Calculate the cost of each path

based on energy consumption, delay, and routing

overhead.

3. Update Personal Best: Each particle updates its

personal best routing path if its current path is better.

4. Update Global Best: The swarm updates the global

best routing path based on the best path found by any

particle.

5. Velocity and Position Update: Adjust the particles

velocities and positions to explore new potential routing

paths.

6. Check for Convergence: Continue for a set number of

iterations or until improvements become negligible.

7. Solution Extraction: Select the global best routing

path as the optimal solution for data transmission.

Particle Swarm Optimization (PSO) provides a powerful

method for optimizing routing in IoT networks by

simulating the social behavior of particles. By iteratively

updating positions and velocities, PSO explores the search

space effectively to find routing paths that balance multiple

performance metrics, such as energy consumption and

delay.

3.4. Lion Optimization (LO) for IoT Routing

Lion Optimization (LO) is inspired by the social hierarchy

and hunting strategies of lions. In the context of IoT

routing, LO can be utilized to optimize routing paths by

simulating the behaviors and interactions of lions, including

their hunting tactics and social structure [17] [18] [19].

Step-by-Step LO Algorithm for IoT Routing

Step 1. Initialization

o Initialize Parameters:

▪ Lion Population: Initialize a population of

lions, where each lion represents a potential

routing path in the IoT network.

▪ Parameters: Set parameters such as the

number of lions Nlions, maximum iterations T,

and constants related to hunting behavior and

social interaction.

▪ Lion Representation: Each lion xi can be

represented as a sequence of nodes in the

network:

xi=[N1,N2,...,Nn]

▪ Initial Fitness: Calculate the initial fitness of

each lion based on the routing path.

Step 2. Fitness Evaluation

o Evaluate Fitness: Compute the fitness of each

lion using an objective function that considers

routing metrics such as energy consumption,

delay, and routing overhead.

▪ Fitness Function: For a routing path xi, the cost Ci can

be calculated as:

Ci=wE⋅E(xi)+wD⋅D(xi)+wR⋅R(xi)

Where:

▪ E(xi) is the energy consumption of the path,

▪ D(xi) is the delay,

▪ R(xi) is the routing overhead,

▪ wE , wD , and wR are weights for these

metrics.

Step 3. Hunting Strategy

o Identify Best Lions: Sort the lions based on their

fitness and identify the top-performing lions (pride

leader, sub-leaders and followers).

Formula:

▪ Ranking: Rank the lions based on their fitness

values:

Rank(i)=Sort(Ci)

▪ Pride Leader: The lion with the best fitness

value becomes the pride leader:

xleader=arg. miniCi

o Hunting: Update the positions of the lions based on

their social structure and hunting strategy.

Formula:

▪ Leader's Influence: Lions update their

positions towards the pride leader using:

xi(t+1)=xi(t)+α⋅(xleader−xi(t))

Where, α is a coefficient controlling the

influence of the leader.

o Sub-Leader’s Influence: Sub-leaders guide the

followers towards the leader’s position with some

adjustments:

xi(t+1)=xi(t)+β⋅(xsub−leader−xi(t))

where,β is a coefficient controlling the influence

of the sub-leader.

o Random Exploration: Introduce random changes to

maintain diversity:

xi(t+1)=xi(t)+γ⋅(Rand()−0.5)

where γ is a coefficient controlling the amount of

randomness.

Step 4. Update Pride Members

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 39

o Adjust Positions: Update the positions of all lions

based on the hunting strategies and influences from

the pride leader and sub-leaders.

▪ Position Update: The position update for a

lion is a combination of leader’s influence,

sub-leader’s influence, and random

exploration:

xi(t+1)=xi(t)+α⋅(xleader−xi(t))+β⋅(xsub−leader

−xi(t))+γ⋅(Rand()−0.5)

Step 5. Check for Convergence

o Termination Condition: Determine if the

algorithm should stop based on convergence

criteria or the maximum number of iterations.

▪ Stopping Criterion:

If Iteration≥T or convergence criterio

n is met, then stop.Convergence can

be checked by monitoring the change

in the global best fitness or positions.

Step 6. Solution Extraction

o Best Solution: After the algorithm terminates, the best

routing path found by the pride leader represents the

optimal solution.

▪ Global Best Path:

xbest=xleader

where, xleader is the position of the pride leader

with the lowest cost.

Example Application: Routing Optimization in a Smart

Agriculture Network

In a smart agriculture IoT network, LO can be used to find

the optimal routing paths for data transmission from various

sensors to a central server:

1. Initialization: Set up lions with random initial

positions representing different routing paths.

2. Fitness Evaluation: Calculate the cost of each

routing path based on energy consumption, delay,

and routing overhead.

3. Hunting Strategy: Update lion positions based on

the pride leader’s path, sub-leaders, and random

exploration.

4. Update Pride Members: Adjust positions to

converge towards optimal paths while maintaining

diversity.

5. Check for Convergence: Continue for a

predefined number of iterations or until

improvements in fitness become negligible.

6. Solution Extraction: Select the routing path with

the lowest cost as the optimal solution.

Lion Optimization (LO) provides a nature-inspired

approach to optimizing routing paths in IoT networks.

By simulating the social and hunting behaviors of lions, LO

effectively explores potential solutions and converges

towards optimal routing paths that balance multiple

performance metrics such as energy consumption and delay.

3.5. Firefly Algorithm (FA) for IoT Routing

The Firefly Algorithm (FA) is inspired by the flashing

behavior of fireflies. It uses the intensity of the light

emitted by fireflies to guide the search for optimal solutions

[20] [21] [22]. In the context of IoT routing, FA can be

used to find efficient routing paths by optimizing

performance metrics such as energy consumption, delay and

throughput.

Step-by-Step FA Algorithm for IoT Routing

1. Initialization

Initialize Fireflies: Create an initial population of fireflies,

where each firefly represents a potential routing path in the

IoT network.

▪ Position Vector: Each firefly’s position xi

represents a routing path:

xi=[N1,N2,...,Nn]

▪ Light Intensity: Initialize the light intensity Ii

of each firefly based on the fitness value. The

fitness function evaluates the routing path based on

metrics such as energy consumption, delay, and

routing overhead.

Fitness Function:

Ii=1 / Ci

Where Ci is the cost of the routing path,

computed as:

Ci=wE⋅E(xi)+wD⋅D(xi)+wR⋅R(xi)

▪ E(xi) is the energy consumption of the

path, D(xi) is the delay, R(xi) is the routing

overhead, and wE, wD, wR are weights for

energy consumption, delay and routing

overhead, respectively.

2. Evaluate Light Intensity

Compute Fitness: For each firefly, compute its light

intensity based on its fitness value. The better the

fitness, the higher the light intensity.

▪ Light Intensity:

Ii=1/ Ci

3. Movement of Fireflies

Attractiveness: Fireflies are attracted to brighter (more

fit) fireflies. Update the position of each firefly based

on the attractiveness of other fireflies.

Attractiveness: The attractiveness β of firefly iii to

firefly jjj is a function of their relative light intensities

and the distance between them:

Where, β0 is the attractiveness at distance 0, γ is

the light absorption coefficient, and dij is the

distance between fireflies i and j.

Movement: Update the position of each firefly based

on the movement towards brighter fireflies and a

random component.

▪ Position Update:

xi(t+1)=xi(t)+βij⋅(xj(t)−xi(t))+α⋅(Rand()−0.5)

Where,

▪ xj(t) is the position of the brighter firefly,

▪ α is the randomization parameter,

▪ Rand() is a random number between 0 and 1.

4. Update Light Intensity

o Recalculate Intensity: After updating

positions, recalculate the light intensity of

each firefly based on its new fitness value.

▪ Recalculate Light Intensity: Ii= 1/ Ci

5. Check for Convergence

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 40

o Termination Condition: Determine if the

algorithm should stop based on convergence

criteria or the maximum number of iterations.

▪ Stopping Criterion:

If Iteration≥T or convergence criterion is met, then

stop.Convergence can be checked by monitoring

the change in the best fitness or positions.

6. Solution Extraction

Best Solution: After the algorithm terminates, the

firefly with the highest light intensity represents the

optimal routing path.

Global Best Path:

xbest=arg . maxi Ii

Where, xbest is the position of the firefly with the highest

light intensity.

Example Application: Routing Optimization in a Smart

Agriculture Network

In a smart agriculture IoT network, FA can be used to find

the optimal routing paths for data transmission from sensors

to a central server:

1. Initialization: Set up fireflies with random initial

positions representing different routing paths.

2. Evaluate Light Intensity: Compute the light

intensity of each firefly based on the cost of its

routing path.

3. Movement of Fireflies: Update firefly positions

based on the attractiveness of brighter fireflies and

random exploration.

4. Update Light Intensity: Recalculate the light

intensity of each firefly after position updates.

5. Check for Convergence: Continue for a

predefined number of iterations or until

improvements in fitness become negligible.

6. Solution Extraction: Select the routing path with

the highest light intensity as the optimal solution.

The Firefly Algorithm (FA) offers a nature-inspired

approach for optimizing routing paths in IoT networks.

By simulating the flashing behavior of fireflies, FA

effectively explores the solution space and converges

towards optimal routing paths that balance performance

metrics such as energy consumption and delay.

IV. EXPERIMENTAL RESULTS

The simulations for this work are carried out using the NS-3

network simulator on a Microsoft Windows 10 machine

equipped with a CORE i5 processor, 8 GB of RAM, and a

2.2 GHz clock speed. Table-1 provides a comprehensive

overview of the simulation parameters. The performance of

various optimization algorithms Genetic Algorithms (GA),

Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO), Lion Optimization, and Firefly

Algorithms is evaluated using several Quality of Service

(QoS) metrics. These metrics include End-to-End Delay,

Routing Overhead, Packet Delivery Ratio (PDR), Idle

Listening Time, Energy Consumption and Throughput. The

evaluation is conducted with respect to different network

sizes, specifically varying the number of nodes in the

simulation. In each simulation, all nodes in the IoT network

are initially assigned a trust value of 0.5. The experiments

are conducted across various node densities, including 50,

100, 150, and 200 nodes. This setup, where the total

number of mobile nodes reflects the population in the

trusted model, allows for a thorough assessment of the

algorithms under diverse network conditions and densities.

Parameter Settings for the Optimization Algorithms

For the Genetic Algorithms (GA), key parameters include

the population size, which typically ranges from 50 to 200

individuals, and the crossover rate (Pc), set between 0.7 and

0.9 to determine the likelihood of crossover between pairs of

individuals. The mutation rate (Pm) usually falls between

0.01 and 0.05, influencing the probability of mutation.

Selection methods such as tournament or roulette wheel

selection, along with crossover methods like single-point or

two-point crossover, are used to drive genetic evolution.

Mutation techniques, including bit-flip and swap mutation,

further refine solutions. The number of generations for

running the algorithm generally ranges from 50 to 200,

with elitism often retaining 1 to 5 of the best individuals

across generations to ensure high-quality solutions.

In Ant Colony Optimization (ACO), the number of ants

typically varies from 20 to 100, impacting the

exploration of the solution space. The pheromone

evaporation rate (ρ), set between 0.1 and 0.5, dictates how

quickly pheromone trails dissipate. The pheromone

importance factor (α) and the heuristic importance factor (β)

are usually set between 1 and 2, and 2 to 5, respectively,

guiding the ant’s decision-making process. The algorithm

employs different pheromone update methods, such as

global or local updates. The total number of iterations for

ACO ranges from 50 to 200, and the amount of

pheromone deposited by ants varies based on the specific

problem scale.

For Particle Swarm Optimization (PSO), the swarm size

typically ranges from 20 to 100 particles. The inertia

weight (ω), influencing the impact of previous velocities on

current velocities, is usually set between 0.4 and 0.9. The

cognitive coefficient (c1) and social coefficient (c2), guiding

the influence of the particle's personal best and the swarm's

global best positions, are typically set between 1.5 and 2.0.

Velocity limits are adjusted based on the problem's scale,

while the randomness factor for exploring solutions

generally ranges from 0.1 to 0.5. The algorithm runs for a

number of iterations between 50 and 200.

In Lion Optimization (LO), the number of lions ranges from

20 to 100, and the alpha lion ratio, representing the fraction

of the best lions, is typically between 0.1 and 0.2.

Parameters controlling the hunting behavior and social

interactions of the lions are set based on problem specifics.

The number of iterations for LO generally ranges from

50 to 200, and the random exploration factor is usually

between 0.1 and 0.5, ensuring a balance between

exploitation and exploration.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 41

For the Firefly Algorithm (FA), the number of fireflies

typically ranges from 20 to 100. The light absorption

coefficient (γ), which controls the rate of light absorption, is

generally set between 0.1 and 1.0. The attractiveness

coefficient (β0), representing the initial attractiveness,

usually ranges from 1.0 to 2.0. The randomness parameter

(α), influencing the amount of randomness in movement,

is typically set between 0.1 and 0.5. The number of

iterations for FA ranges from 50 to 200, and the distance

metric used to calculate the distance between fireflies can be

either Euclidean or Manhattan. The update methods focus

on attraction to brighter fireflies combined with random

movement. These parameter settings provide a foundational

guide for tuning each optimization algorithm to achieve

effective performance in various routing scenarios within

IoT networks.

Table 1: Simulation Parameters

Parameter Value

Number of nodes h 200 nodes

Network size Bt × Ct 500m X 500m

Transmission range 2500 m

Initial energy K0 240 J

Propagation model Two ray ground

Number of rounds 50

Packet size 1 MB

Traffic type CBR

MAC type 802.11

Antenna type Omni directional antenna

4.1. End-to-End Delay

End-to-End Delay in IoT routing is the total time taken for a

data packet to travel from the source node to the destination

node across the network. It includes the time taken for

packet transmission, propagation, queuing and processing

delays.

 End-to-

End Delay=Transmission Delay+Propagation Delay+Queu

ing Delay+Processing Delay

 Where,

▪ Transmission Delay is the time required to push all the

packet's bits into the link:

Transmission Delay= (Packet Size) / (Transmission Rate)

▪ Propagation Delay is the time taken for a signal to

propagate from the sender to the receiver:

Propagation Delay= (Distance) / (Propagation Speed)

▪ Queuing Delay is the time a packet spends waiting in

the queue before being transmitted:

Queuing Delay=Queue Length × Packet Arrival Rate

▪ Processing Delay is the time required to process the

packet headers and forward the packet:

Processing Delay=Processing Time per Packet

PSO tends to achieve lower end-to-end delay because it

effectively balances exploration and exploitation during

optimization. PSO’s global best solution guides the swarm

towards efficient paths, reducing delay by minimizing

hops and optimizing routes based on current network

conditions. Its ability to adapt quickly to changing

conditions helps in finding low-latency paths efficiently.

ACO can achieve good results in end-to-end delay by

effectively leveraging pheromone trails to find short paths.

However, its performance can be impacted by the

pheromone evaporation rate and the exploration-exploitation

trade-off. While it generally finds efficient routes, it might

require more iteration to converge to an optimal solution

compared to PSO. FA performs well in optimizing end-to-

end delay by guiding fireflies towards brighter solutions

(shorter delays). However, the performance can be limited

by the randomness factor and the balance between

attraction and random movement, which can lead to slower

convergence and higher delays compared to PSO. GA can

be less efficient in reducing end-to-end delay due to its

reliance on crossover and mutation operations, which may

lead to slower convergence. While GA explores a diverse

set of solutions, it might take longer to find optimal paths

compared to PSO, impacting the end-to-end delay. LO may

have higher end-to-end delays due to its complex behavior

of hunting and social interactions among lions. This LO

algorithm’s convergence to optimal paths can be slower, and

the exploration of the solution space may not be efficient

like PSO, leading to potentially higher delays.

Figure 2: End to End Delay Vs Number of nodes

In conclude Figure 2 Shown, PSO is generally the best

algorithm for minimizing end-to-end delay in IoT

routing due to its efficient balance between exploration and

exploitation, quick adaptation to network conditions, and

effective convergence to optimal routes. ACO and FA also

provide good results but may exhibit slower convergence or

higher delays due to their respective pheromone or

attractiveness-based strategies. GA and LO, while effective,

often result in longer convergence times and higher end-to-

end delays due to their operational complexities and

exploration mechanisms.

4.2. Packet Delivery Ratio (PDR)

Packet Delivery Ratio (PDR) is a key performance metric

in IoT routing that measures the effectiveness of a routing

algorithm in delivering packets from the source to the

destination. It is defined as the ratio of the number of

successfully received packets at the destination to the

number of packets sent by the source.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 42

PDR = (Number of Packets Received) / (Number of

Packets Sent) x 100%

PSO often excels in packet delivery ratio due to its effective

global search capabilities. By optimizing paths based on

swarm intelligence, PSO can find routes that minimize

packet loss and improve overall delivery success. The

algorithm's ability to adapt quickly to network changes and

avoid congested or faulty paths contributes to higher PDR.

ACO is effective in improving packet delivery ratio by

utilizing pheromone trails to guide ants towards optimal

paths. The pheromone-based approach helps in identifying

reliable routes, which can lead to a high PDR. However,

ACO may require more iteration to converge, and

pheromone decay can affect the delivery ratio if not

properly managed. FA can achieve good packet delivery

ratios by guiding fireflies towards brighter (more optimal)

solutions. But, its performance can be influenced by the

randomness parameter and light absorption coefficient,

which can sometimes lead to suboptimal paths or increased

packet loss. GA can be less efficient in terms of packet

delivery ratio due to the potential for slower convergence

and the use of crossover and mutation operations. While GA

explores a broad solution space, it may not always focus on

optimizing packet delivery, leading to lower PDR in

some cases. LO may exhibit lower packet delivery ratios

because its complex behavioral strategies can lead to

longer convergence times and less effective routing paths.

The lion's hunting and social interactions might not always

lead to optimal routing solutions, impacting packet

delivery.

Figure 3: Packet Delivery Ratio Vs Number of

nodes

Figure 3 Shown, PSO generally provides the best Packet

Delivery Ratio (PDR) in IoT routing due to its efficient

search capabilities, adaptability to dynamic network

conditions, and ability to identify reliable paths. ACO also

performs well but may be slower to converge and can be

affected by pheromone management issues. FA offers good

performance but may be influenced by its randomness

factors. GA and LO, while useful, often show lower PDR

due to slower convergence and less effective optimization of

routing paths.

4.3. Routing Overhead

Routing Overhead refers to the additional network resources

consumed by routing protocols beyond the actual data

transmission. It includes the control messages, packet

headers, and any other protocol-specific data required to

establish and maintain routes. Lower routing overhead is

desirable as it signifies more efficient use of network

resources.

Routing Overhead = (Total Control Packets Sent) /(Total

Data Packets Sent) x 100

PSO typically exhibits lower routing overhead due to its

efficient search mechanism. PSO uses a swarm of particles

to explore the solution space, with minimal communication

between particles compared to some other algorithms. This

leads to reduced control message exchange and overhead, as

the focus is primarily on optimizing the routing paths

directly without extensive route maintenance. ACO can

have higher routing overhead due to the continuous

exchange of pheromone information and the need for ants

to frequently communicate their discovered routes. The

pheromone update process and route discovery involve

numerous control packets, which contribute to increase

routing overhead, especially in dynamic or large networks.

FA may also exhibit higher routing overhead compared

to PSO due to the communication required among fireflies

to share information about light intensity (quality of

solutions). The need to exchange information about fitness

levels and update positions contributes to additional

overhead, although it is generally less than ACO. GA can

lead to moderate to high routing overhead because of the

frequent generation of control messages for crossover and

mutation operations. The need for maintaining a population

of potential solutions and performing genetic operations on

them can result in considerable control packet exchanges.

LO tends to have higher routing overhead due to its

complex hunting and social interaction strategies among

lions. The frequent updates and interactions for positioning

and hunting can increase the number of control messages

exchanged, thereby rising the routing overhead.

Figure 4: Routing Overhead Vs Number of nodes

Figure 4 Shown, PSO is generally the best for

minimizing routing overhead in IoT routing due to its

efficient particle-based communication, which reduces the

need for excessive control messages. ACO tends to have

higher routing overhead because of its extensive pheromone

communication and route discovery processes. FA also

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 43

incurs some overhead due to information sharing among

fireflies but generally less than ACO. GA can result in

moderate to high overhead due to genetic operations, and

LO typically shows higher overhead due to its complex

behavioral strategies.

4.4. Throughput

Throughput is a measure of the rate at which packets are

successfully delivered to the destination over a network. It is

typically expressed in bits per second (bps) or packets per

second (pps). Higher throughput indicates that more data is

being transmitted successfully, which is crucial for efficient

network performance.

Throughput = (Total Data Received) /(Total Time Taken)

Where, Total Data Received is the total amount of data

successfully received at the destination. Total Time Taken is

the total time taken for the data to be transmitted and

received.

PSO generally offers high throughput due to its efficient

optimization of routing paths. By balancing exploration

and exploitation, PSO can identify routes that maximize data

transmission efficiency and minimize delays. Its global

search capabilities allow it to optimize paths that facilitate

high data rates and efficient use of network resources. ACO

can also achieve good throughput by utilizing pheromone

trails to discover optimal paths for data transmission. The

algorithm's ability to find efficient routes based on

pheromone feedback generally supports high throughput.

However, the effectiveness can be influenced by

pheromone evaporation rates and the exploration-

exploitation trade-off, which may sometimes limit

throughput. FA provides good throughput by directing

fireflies towards brighter solutions, which typically

correspond to efficient routes. However, the performance in

terms of throughput can be variable depending on the

parameters used, such as the attractiveness factor and

randomness. If these parameters are not well-tuned,

throughput may not be as high as that achieved with PSO.

GA can achieve moderate throughput by exploring a

broad range of solutions through crossover and mutation.

However, the convergence process might be slower

compared to PSO, which can affect the optimization of

routing paths and, consequently, throughput. Additionally,

the genetic operations can sometimes lead to suboptimal

routing paths, impacting the overall throughput. LO often

exhibits lower throughput compared to PSO due to its

complex behavioral strategies, which can lead to slower

convergence and less effective path optimization. The

hunting and social interactions of lions might not always

result in the most efficient routing paths, potentially

reducing throughput.

Figure 5: Throughput Vs Number of nodes

Figure 5 Shown, PSO is typically the best algorithm for

achieving high throughput in IoT routing due to its effective

balance between exploration and exploitation, which enables

it to find and optimize high-data-rate paths efficiently. ACO

also supports good throughput by discovering efficient

routes based on pheromone feedback, though its

performance can be influenced by pheromone management.

FA can deliver good throughput but is dependent on the

tuning of its parameters. GA and LO generally result in

lower throughput compared to PSO due to slower

convergence and less efficient path optimization.

4.5. Energy Consumption

Energy Consumption refers to the amount of energy used by

nodes in a network to transmit, receive, and process data. In

IoT routing, minimizing energy consumption is crucial for

prolonging the network’s operational lifetime, especially

given the limited energy resources of IoT devices.

Energy Consumption=Energy for Transmission+Energy fo

r Reception+Energy for Processing

Where:

• Energy for Transmission is the energy used to

send data packets:

Etrans=Packet Size×Transmission Energy per Bit

• Energy for Reception is the energy used to

receive data packets:

Erec=Packet Size×Reception Energy per Bit

• Energy for Processing is the energy used for

processing and routing decisions:

Eproc=Processing Time×Processing Energy per Unit

 Time

PSO tends to have lower energy consumption because it

minimizes the number of control messages and optimizes

routing paths effectively. By efficiently exploring the

solution space and finding optimal paths with fewer hops,

PSO reduces the overall energy used for data transmission

and processing. Its adaptive nature ensures that energy is

used efficiently throughout the network. ACO can result in

higher energy consumption due to the frequent updates

of pheromone trails and the numerous control packets

required for route discovery and maintenance. The constant

exchange of pheromone information and route adjustments

can lead to increased energy usage, especially in large or

dynamic networks. FA may incur moderate energy

consumption due to the need for fireflies to exchange

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 44

information about their fitness (brightness). Although this

exchange is less intensive than in ACO, it can still

contribute to additional energy usage. The algorithm’s

randomness and attraction mechanisms can sometimes result

in suboptimal routing paths, affecting energy efficiency. GA

typically leads to higher energy consumption due to the

genetic operations like crossover and mutation, which

require significant control and communication among nodes.

The process of maintaining and evolving a population of

solutions can result in substantial energy expenditure for

transmitting and processing genetic data. LO often exhibits

higher energy consumption due to its complex behavior

involving hunting and social interactions among lions.

The frequent updates and interactions required for position

adjustments and hunting strategies can lead to increased

energy usage for data transmission and processing.

Figure 6: Energy Consumption Vs Number of

nodes

Figure 6 Shown, PSO is generally the best for

minimizing energy consumption in IoT routing due to its

efficient optimization of routing paths and low control

message overhead. ACO can result in higher energy usage

because of the extensive pheromone exchange and route

updates. FA typically has moderate energy consumption

due to information sharing among fireflies. GA and LO

usually have higher energy consumption due to the

significant amount of control messages and complex

behavioral strategies, leading to increased energy usage in

routing and processing.

4.6. Latency

Latency refers to the time delay experienced in the network

from the moment a data packet is sent by the source node

until it is received by the destination node. In IoT routing,

minimizing latency is critical for ensuring timely delivery of

data and improving the responsiveness of the network.

Latency=Transmission Time+Propagation Time+Queuein

g Time+Processing Time

Where,

o Transmission Time is the time required to

push all the packet's bits into the link:

Ttrans= (Packet Size)/ (Transmission Rate)

o Propagation Time is the time taken for the

signal to travel from sender to receiver:

Tprop= (Distance) / (Propagation Speed)

o Queueing Time is the time a packet spends in

a queue before being transmitted:

Tqueue = Average Queue Length x Average Service

Time

o Processing Time is the time required to

process the packet at intermediate nodes:

Tproc=Processing Time per Packet ×

Number of Nodes

PSO is often the most effective at minimizing latency due

to its efficient optimization process. By quickly

converging to optimal or near-optimal solutions, PSO can

identify paths that reduce the number of hops and

transmission delays, thereby lowering the overall latency.

The algorithm’s ability to rapidly adapt and optimize paths

in real-time helps maintain low latency in dynamic IoT

networks. ACO can exhibit higher latency due to the

time required for pheromone updates and route

discoveries. The algorithm’s process of exploring and

updating paths through pheromone trails involves multiple

iterations, which can introduce delays. As a result, ACO

might have longer latency compared to PSO, especially in

larger or more dynamic networks where pheromone

management becomes more complex. FA typically shows

moderate latency. The algorithm’s use of attractiveness and

light intensity to guide fireflies towards optimal solutions

can introduce delays due to the need for frequent updates

and fitness evaluations. Although it generally performs well,

its effectiveness in reducing latency depends on the

parameter tuning and the speed of convergence. GA can

result in higher latency due to the time-consuming

processes of crossover, mutation, and fitness evaluation.

The population-based approach requires multiple

generations to converge to an optimal solution, which can

introduce delays. The complexity of genetic operations may

lead to increased latency in routing decisions. LO often

experiences the highest latency among the algorithms

due to its complex behavioral strategies, including

hunting and social interactions. The frequent updates and

interactions required for position adjustments and hunting

strategies contribute to increased latency, as these

interactions can be computationally intensive and time-

consuming.

Figure 7: Latency Vs Number of nodes

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 45

Figure 7 Shown, PSO is typically the best algorithm for

minimizing latency in IoT routing due to its rapid

convergence and efficient optimization of routing paths.

ACO tends to have higher latency due to the iterative

pheromone update process and route discovery overhead.

FA can show moderate latency, influenced by parameter

tuning and the fitness evaluation process. GA generally

results in higher latency due to the evolutionary processes

and multiple generations required for convergence. LO

often has the highest latency due to its complex interaction

and behavioral strategies, which can introduce significant

delays in routing.

4.7. Idle Listening Time

Idle Listening Time refers to the period during which an IoT

node remains active and listens for incoming messages,

but no data is being transmitted or received. This time is

considered a waste of energy because the node's radio is on

without any productive communication. Minimizing Idle

Listening Time is crucial for enhancing energy efficiency

in IoT networks, as it helps to extend the lifespan of

battery-powered nodes. To quantify Idle Listening Time,

you can use the following formula:

Idle Listening Time=Total Time Node is Active−Time Node

 is Transmitting or Receiving

In a more formal analysis, if Tactive is the total time the node

is in an active state, Ttransmit is the time spent transmitting

data, and Treceive is the time spent receiving data, then:

Idle Listening Time = Tactive - Ttransmit + Treceive

PSO can optimize routing paths to reduce Idle Listening

Time by finding the most energy-efficient routes. Its

ability to explore a wide solution space and converge to an

optimal solution quickly makes it effective for minimizing

energy consumption. ACO can optimize routing by

finding efficient paths and reducing energy waste.

However, it may require more iteration to converge to a

solution compared to PSO, potentially resulting in higher

Idle Listening Time during the search phase. FA can be

effective in reducing Idle Listening Time by finding

optimal paths. Its search capability is generally good, but it

may not always converge as quickly as PSO, leading to

potentially higher energy consumption during the search

process. GA can be effective in optimizing routing paths but

may involve higher computational complexity and longer

convergence times compared to PSO, potentially resulting

in higher Idle Listening Time. LO can provide competitive

results in optimizing routing paths. However, its

convergence time and computational complexity can

vary, potentially affecting Idle Listening Time compared to

PSO.

Figure 8: Idle Listening Time Vs Number of

nodes

Figure 8 Shown, PSO is favored for its fast convergence

and efficient exploration of the solution space, leading to

lower Idle Listening Time and better overall energy

efficiency in IoT routing.ACO, Effective but may take more

iteration to converge, potentially leading to higher Idle

Listening Time during the search phase. FA, Good search

capability but may not converge as quickly as PSO, which

can impact energy efficiency.GA, Effective but often

involves higher computational complexity and longer

convergence times, potentially resulting in higher Idle

Listening Time. LO, Can be competitive but may have

variable convergence times and complexity, affecting Idle

Listening Time. For optimizing energy efficiency in IoT

routing, PSO is generally the most effective algorithm due

to its balance of exploration and exploitation, leading to

lower Idle Listening Time and better overall energy

performance compared to the other algorithms.

4.8. Scalability

Scalability refers to the ability of a routing algorithm to

handle an increasing number of nodes or network size

efficiently. An algorithm is considered scalable if its

performance remains effective as the network grows in

terms of nodes, network size, or traffic load. Scalability is

often measured by assessing performance metrics like

throughput, delay, and overhead as the number of nodes

increases. One way to quantify scalability is:

Scalability Index = (Performance Metric)/ (Network Size

or Number of Nodes)

Where, Performance Metric could be throughput, delay, or

overhead. Network Size or Number of Nodes is the total

number of nodes in the network. Measures the average

energy consumed by each node as the network size

increases.

Average Energy Consumption per Node=

(Total Energy Consumed) / N

PSO is generally the most scalable algorithm among the

listed options. Its particle-based approach efficiently

explores the solution space and adapts to increasing network

sizes with minimal increase in computational complexity.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 46

The swarm intelligence model allows PSO to handle larger

networks without a significant degradation in

performance, as it primarily relies on local and global best

solutions rather than exhaustive search or complex

interactions. ACO can face scalability challenges because

the pheromone update process and route discovery require

significant communication overhead, which increases with

the network size. As the number of nodes grows, the

pheromone trails and the number of ants need to be

managed carefully to avoid excessive computation and

memory usage, which can impact scalability. FA shows

moderate scalability. While it efficiently directs fireflies

towards optimal solutions, the algorithm’s performance can

be affected by the need to maintain and update information

about the fitness (brightness) of multiple fireflies. As the

network size increases, the interaction among fireflies and

the updating process can become computationally intensive,

this may impact scalability. GA generally exhibits lower

scalability due to the computational complexity involved

in managing and evolving a large population of solutions.

The processes of crossover, mutation, and fitness evaluation

can become computationally expensive and resource-

intensive as the number of nodes increases, leading to

slower performance and scalability issues. LO typically

shows the lowest scalability among the algorithms. Its

complex behavioral strategies, such as hunting and social

interactions, involve frequent updates and communication

among lions. As the network size increases, these

interactions can lead to significant computational and

communication overhead, affecting scalability.

Figure 9: Scalability Vs Number of nodes

Figure 9 Shown, PSO is the best algorithm for

scalability in IoT routing due to its efficient exploration

and minimal computational overhead, which allows it to

handle larger networks effectively. ACO faces scalability

challenges due to the increasing complexity of pheromone

management and route discovery with network size. FA

shows moderate scalability but can become computationally

intensive with larger networks. GA and LO are generally

experience lower scalability due to their high computational

and communication overhead, which also increases with the

number of nodes and network size.

V. CONCLUSION

In this research work, we examined several optimization

algorithms Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO), Firefly Algorithm (FA), Genetic

Algorithms (GA) and Lion Optimization (LO) for improving

energy efficiency and Quality of Service (QoS) parameters

in IoT routing. Each algorithm was analyzed based on its

performance in terms of end-to-end delay, packet delivery

ratio (PDR), routing overhead, throughput, energy

consumption, scalability and latency. Particle Swarm

Optimization (PSO) emerged as the most effective

algorithm for IoT routing due to its ability to minimize

latency, maximize throughput, and reduce energy

consumption efficiently. Its swarm intelligence approach

allows it to quickly converge to optimal or near-optimal

routing solutions, making it highly suitable for dynamic and

large-scale IoT networks. Ant Colony Optimization (ACO),

while effective in discovering efficient paths, showed higher

latency and energy consumption due to the pheromone

update mechanism and route discovery overhead. Its

performance is heavily influenced by the management of

pheromone trails and network size. Firefly Algorithm (FA),

though generally effective, demonstrated moderate

scalability and latency. Its performance can be improved

with better parameter tuning and optimization of the firefly

attraction mechanism. Genetic Algorithms (GA) exhibited

higher latency and energy consumption due to the

complexity of genetic operations and the need for multiple

generations to converge. While GA provides a diverse set of

solutions, its computational overhead limits its effectiveness

in large-scale networks. Lion Optimization (LO) faced

challenges in scalability and latency due to its complex

behavioral strategies. The frequent updates and interactions

among lions led to increased computational overhead and

delays in routing decisions.

Future research should focus on addressing the limitations

identified in this study and exploring the following areas:

▪ Algorithm Enhancements: Investigate

improvements and hybridization of the existing

algorithms to combine the strengths of multiple

techniques. For example, combining PSO with

other algorithms like DNN or RNN could enhance

performance metrics such as scalability and energy

efficiency.

▪ Dynamic Network Environments: Develop and

test algorithms in highly dynamic and

heterogeneous IoT environments where nodes

frequently join, leave, or move. This will help in

assessing the algorithms' adaptability and

robustness in real-world scenarios.

▪ Energy-Efficient Mechanisms: Explore advanced

energy-efficient techniques and mechanisms within

the optimization algorithms to further reduce

energy consumption, especially in resource-

constrained IoT devices.

VI.REFERENCES
[1]. A. Almazroi, "A Survey on Internet of Things

(IoT) Architecture, Protocols and Applications,"

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 47

IEEE Access, vol. 9, pp. 46321-46338, 2021. DOI:

10.1109/ACCESS.2021.3064942.

[2]. S. K. Sharma and S. A. R. R. Sharma, "Internet of

Things (IoT) for Smart City: A Survey," IEEE

Internet of Things Journal, vol. 7, no. 8, pp. 6852-

6867, Aug. 2020. DOI:

10.1109/JIOT.2019.2968720.

[3]. N. Kumar, M. N. B. Shankar, and R. G. Rajan, "A

Comprehensive Survey on IoT Networks and

Services: Architectures, Protocols, and Future

Directions," IEEE Transactions on Network and

Service Management, vol. 16, no. 2, pp. 567-589,

Jun. 2019. DOI: 10.1109/TNSM.2019.2917462.

[4]. R. K. Gupta, V. S. S. M. Krishna, and A. Kumar,

"Routing Protocols for Internet of Things (IoT): A

Survey," IEEE Access, vol. 8, pp. 48477-48499,

2020. DOI: 10.1109/ACCESS.2020.2974028.

[5]. M. F. A. S. Sheikh and H. A. Javed, "A Survey on

Cluster-Based Routing Protocols for Wireless

Sensor Networks and IoT," IEEE Access, vol. 8,

pp. 22928-22950, 2020. DOI:

10.1109/ACCESS.2020.2970551

[6]. M. Zhang and H. Xu, "Cluster-Based Routing

Protocols for Internet of Things: A Review," IEEE

Access, vol. 7, pp. 21665-21681, 2019. DOI:

10.1109/ACCESS.2019.2898044.

[7]. R. Shankar, P. R. Kumar, and A. Kumar, "Efficient

Cluster-Based Routing Protocols for IoT Networks:

A Survey," IEEE Internet of Things Journal, vol. 6,

no. 3, pp. 4645-4660, Jun. 2019. DOI:

10.1109/JIOT.2018.2889841.

[8]. J. Holland, "Adaptation in Natural and Artificial

Systems," University of Michigan Press, Ann

Arbor, 1975. ISBN: 0472084605.

[9]. D. E. Goldberg, "Genetic Algorithms in Search,

Optimization, and Machine Learning," Addison-

Wesley, Reading, MA, 1989. ISBN: 0201157675.

[10]. Z. Michalewicz, "Genetic Algorithms + Data

Structures = Evolution Programs," Springer, Berlin,

1996. ISBN: 0387947631.

[11]. M. Dorigo and T. Stützle, "Ant Colony

Optimization," MIT Press, Cambridge, MA, 2004.

ISBN: 0262033580.

[12]. S. C. H. Yang and K. K. Goh, "A Review of Ant

Colony Optimization Algorithms for Routing in

Communication Networks," IEEE Access, vol. 6,

pp. 75267-75282, 2018. DOI:

10.1109/ACCESS.2018.2880556.

[13]. T. Stützle and M. Dorigo, "A Short Tutorial on Ant

Colony Optimization," Proceedings of the

International Workshop on Ant Algorithms, pp. 1-

12, 2001. DOI: 10.1007/3-540-44577-6_1.

[14]. J. Kennedy and R. C. Eberhart, "Particle Swarm

Optimization," Proceedings of the IEEE

International Conference on Neural Networks, vol.

4, pp. 1942-1948, Dec. 1995. DOI:

10.1109/ICNN.1995.488968.

[15]. Y. Shi and R. Eberhart, "A Modified Particle

Swarm Optimizer," Proceedings of the IEEE

International Conference on Evolutionary

Computation, pp. 69-73, May 1998. DOI:

10.1109/ICEC.1998.699146.

[16]. A. P. Engelbrecht, "Computational Intelligence: An

Introduction," IEEE Transactions on Evolutionary

Computation, vol. 7, no. 4, pp. 368-372, Aug.

2003. DOI: 10.1109/TEVC.2003.814440.

[17]. A. M. J. Khan, T. T. Khan, and W. Khan, "Lion

Optimization Algorithm: A New Metaheuristic

Algorithm for Solving Optimization Problems,"

IEEE Access, vol. 8, pp. 72199-72212, 2020. DOI:

10.1109/ACCESS.2020.2988935.

[18]. A. G. N. Ali and R. A. Saeed, "Lion Algorithm for

Optimization: Theory and Applications,"

Proceedings of the International Conference on

Computational Intelligence and Networks, pp. 80-

85, Dec. 2015. DOI: 10.1109/CINE.2015.24.

[19]. H. Faris, A. A. J. Ahmed, and M. J. K. El-Raouf,

"Lion Algorithm for Network Optimization: A

Review and New Directions," IEEE Transactions

on Emerging Topics in Computing, vol. 9, no. 3,

pp. 647-658, Jul. 2021. DOI:

10.1109/TETC.2020.3035265.

[20]. X.-S. Yang, "Firefly Algorithms for Multimodal

Optimization," Stochastic Algorithms: Foundations

and Applications, vol. 5792, pp. 169-178, 2009.

DOI: 10.1007/978-3-642-00497-0_13.

[21]. X.-S. Yang, "A New Metaheuristic Firefly

Algorithm," Proceedings of the International

Workshop on Nature Inspired Cooperative

Strategies for Optimization (NICSO 2009), pp. 1-8,

2009. DOI: 10.1007/978-3-642-04675-9_1.

[22]. R. K. Gupta and S. A. Khan, "Firefly Algorithm-

Based Routing for Energy-Efficient Wireless

Sensor Networks," IEEE Access, vol. 9, pp. 39617-

39628, 2021. DOI:

10.1109/ACCESS.2021.3064548.

ABOUT THE AUTHORS

S.Bharathi received her M.Phil Degree

from Periyar University, Salem in the Year

2018. She has received her M.Sc Degree

from Periyar University, Salem in the year

2016. She is pursuing her Ph.D Degree

(Full Time) in Sri Vijay Vidyalaya College of Arts and

Science, Nallampalli, Dharmapuri, Tamilnadu, India. Her

Current research of interests includes Internet of Things,

Cloud Computing, Network Security and Cryptography.

Dr.D.Maruthanayagam received his Ph.D

Degree from Manonmaniam Sundaranar

University, Tirunelveli in the year 2014. He

received his M.Phil Degree from

Bharathidasan University, Trichy in the

year 2005. He received his M.C.A Degree from Madras

University, Chennai in the year 2000. He is working as

Dean cum Professor, PG and Research Department of

Computer Science, Sri Vijay Vidyalaya College of Arts &

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 5, Sep - Oct 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 48

Science, Dharmapuri, Tamilnadu, India. He has above 23

years of experience in academic field. He has published 8

books, more than 60 papers in International Journals and

35 papers in National & International Conferences so far.

His areas of interest include Computer Networks, Grid

Computing, Cloud Computing and Mobile Computing.

http://www.ijcstjournal.org/

