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ABSTRACT 

The proliferation of Internet of Things (IoT) devices has underscored the need for efficient routing strategies to enhance energy 

efficiency and quality of service in network communications. This paper investigates the performance of five optimization 

algorithms Genetic Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Lion Optimization, 

and Firefly Algorithms in a cluster-based IoT network architecture. We evaluate these algorithms based on key performance 

metrics including End-to-End Delay, Packet Delivery Ratio (PDR), Routing Overhead, Throughput, Energy Consumption, 

Scalability, Idle Listening Time and Latency. Using a simulation-based approach, we analyze and compare the effectiveness of 

each algorithm in improving routing efficiency and network performance. This paper results highlight the strengths and 

limitations of each algorithm, offering insights into their suitability for various IoT applications. This investigation provides a 

comprehensive evaluation of how these optimization techniques can be leveraged to address the challenges of energy consumption 

and service quality in IoT networks, paving the way for more effective and scalable IoT solutions. 

Keywords: Internet of Things (IoT), Cluster-Based IoT Network , Optimization Algorithms , Genetic Algorithms (GA) , Ant 

Colony Optimization (ACO) , Particle Swarm Optimization (PSO), Lion Optimization ,Firefly Algorithms , Energy Efficiency 

and Quality of Service (QoS).  

 

1. INTRODUCTION 
The Internet of Things (IoT) represents a transformative 

shift in technology, connecting billions of devices across 

diverse domains from smart homes to industrial 

applications. The efficient management of these devices 

relies heavily on the underlying network infrastructure, 

particularly in routing and data transmission. As IoT 

networks expand, traditional routing strategies struggle to 

meet the growing demands for energy efficiency and quality 

of service (QoS). Addressing these challenges is crucial for 

sustaining the performance and scalability of IoT systems. 

Routing in IoT networks involves navigating complex 

topologies with varying node densities and energy 

constraints [1] [2]. The efficiency of routing algorithms 

directly impacts key performance metrics such as energy 

consumption, latency, and packet delivery ratio. 

Consequently, optimizing these algorithms is essential for 

ensuring that IoT networks operate efficiently and reliably 

[3]. 

In cluster-based IoT networks, where nodes are organized 

into clusters to enhance communication efficiency and 

manageability, routing strategies must balance multiple 

factors. These include minimizing energy consumption, 

reducing end-to-end delay, maximizing throughput, and 

ensuring high packet delivery ratios [4]. Traditional routing 

approaches often fail to adapt to dynamic network 

conditions and energy constraints effectively. Recent 

advancements in optimization techniques offer promising 

solutions to these challenges. Genetic Algorithms (GA), Ant 

Colony Optimization (ACO), Particle Swarm Optimization 

(PSO), Lion Optimization, and Firefly Algorithms have 

demonstrated potential in various optimization contexts. 

However, their comparative effectiveness in the specific 

context of IoT routing has not been thoroughly explored.  

 

This paper seeks to address this gap by evaluating these 

algorithms in terms of their impact on QoS parameters 

in a cluster-based IoT network. 

The primary objective of this research is to evaluate and 

compare the performance of GA, ACO, PSO, Lion 

Optimization, and Firefly Algorithms in optimizing 

routing within a cluster-based IoT network. This analysis 

focuses on key performance metrics, including End-to-End 

Delay, Packet Delivery Ratio (PDR), Routing Overhead, 

Throughput, Energy Consumption, Idle Listening Time, 

Scalability, and Latency. By analyzing these metrics, this 

paper aims to identify the most effective optimization 

techniques for enhancing energy efficiency and overall 

service quality in IoT networks. 

This research makes several significant contributions to the 

field of IoT network optimization: 

▪ Comparative Analysis: Provides a detailed 

comparative analysis of five advanced optimization 

algorithms in the context of cluster-based IoT routing. 

▪ Performance Metrics: Evaluates the algorithms based 

on a comprehensive set of QoS parameters, offering 

insights into their strengths and limitations. 
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▪ Practical Insights: Offers practical recommendations 

for selecting and implementing optimization algorithms 

to improve IoT network performance. 

▪ Future Directions: Identifies potential areas for future 

research and development in IoT routing optimization. 

By addressing these aspects, the paper aims to advance the 

understanding of how different optimization techniques can 

be applied to enhance the efficiency and reliability of IoT 

networks. 

 

 

II.SYSTEM MODEL 

2.1. Cluster-Based IoT Networks 

Cluster-based IoT networks are a prevalent architecture 

designed to enhance the efficiency and scalability of large-

scale IoT deployments. In this architecture, the network is 

organized into clusters, each managed by a central node 

known as the Cluster Head (CH). The remaining nodes 

within a cluster are referred to as Member Nodes (MNs). 

This hierarchical organization simplifies the management of 

network resources, reduces energy consumption, and 

improves data aggregation and transmission efficiency [5]. 

The main advantages of cluster-based architectures include: 

• Reduced Communication Overhead: By aggregating 

data at the cluster level before transmission, cluster-

based networks reduce the number of messages sent 

to the base station or gateway. 

• Energy Efficiency: CHs handle data collection and 

routing tasks, while MNs primarily focus on sensing 

and transmitting data to the CH, which can extend the 

battery life of individual nodes. 

• Scalability: Clustering helps manage network size by 

reducing the number of direct communications 

between nodes, making it easier to scale the network as 

the number of devices increases. 

Cluster formation in IoT networks is typically dynamic and 

involves several key steps [6]: 

• Cluster Formation: Nodes determine their roles (CH or 

MN) based on predefined criteria, such as node energy 

levels, proximity, and network density. Various 

algorithms, such as LEACH (Low-Energy Adaptive 

Clustering Hierarchy), are employed to form clusters 

and elect CHs.  

• Cluster Maintenance: To ensure efficient network 

operation, clusters are periodically re-evaluated and 

reorganized. This helps accommodate changes in node 

energy levels, mobility, or network topology. 

• Data Aggregation and Transmission: CHs collect data 

from MNs, aggregate it to reduce redundancy, and 

then forward it to the base station or gateway. This 

aggregation minimizes the amount of data that needs to 

be transmitted over long distances, reducing energy 

consumption and network congestion. 

In an IoT network model comprising 10 nodes labeled n1 

through n10, we organize the nodes into clusters to manage 

communication efficiently. Specifically, the network is 

divided into two clusters: Cluster 1 includes nodes n1, n2, 

n3 (acting as the Cluster Head, or CH), n4, and n5, while 

Cluster 2 encompasses nodes n6, n7 (CH), n8, and n9. The 

sink node, n10, serves as the base station that collects data 

from both clusters. During network initialization, nodes are 

deployed, and cluster heads are selected based on criteria 

such as residual energy and node degree. Nodes then 

associate with the nearest or most suitable CH. In this 

model, intra-cluster communication occurs directly between 

nodes and their respective CHs, with nodes n1, n2, n4, and 

n5 communicating with CH n3, and nodes n6, n8, and n9 

communicating with CH n7. For inter-cluster 

communication, CHs n3 and n7 aggregate data from their 

clusters and transmit it to the sink node n10. 

 
 

Figure 1: IoT network model for 10 nodes 

 

2.2. Key Components of Cluster-Based IoT Networks 

1. Cluster Heads (CHs) 

o Role: Act as coordinators within their respective 

clusters. They collect data from Member Nodes 

(MNs), perform data aggregation, and relay 

aggregated data to the base station or gateway. 

o Responsibilities: Manage intra-cluster 

communication, handle data aggregation, and reduce 

the amount of data transmitted to the base station. 

2. Member Nodes (MNs) 

o Role: Collect and transmit data to the Cluster 

Head. 

o Responsibilities: Sense the environment or 

application-specific parameters, send raw data or 

pre-processed data to the CH. 

3. Base Station/Gateway 

o Role: Acts as a central point for receiving data 

from multiple clusters and providing connectivity to 

external networks or the Internet. 

o Responsibilities: Aggregate data from all 

clusters, process data, and interface with external 

systems or applications. 

4. Communication Links 

o Intra-Cluster Links: Communication between 

MNs and CHs within the same cluster. 

o Inter-Cluster Links: Communication between 

different clusters via CHs or directly to the base 

station. 

2.3 Benefits of Cluster-Based Architecture 

Cluster-based IoT networks offer several benefits: 

• Improved Energy Efficiency: By reducing the 

distance that data must travel and centralizing data 
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aggregation at the CH, energy consumption is 

significantly reduced. 

• Enhanced Network Lifetime: Effective clustering 

can balance energy consumption across the 

network, prolonging the overall network lifetime. 

• Reduced Latency: Aggregation at the cluster level 

can decrease the time required to process and 

transmit data, thereby reducing latency. 

• Increased Network Throughput: By minimizing 

direct communication among nodes and aggregating 

data efficiently, the network can handle higher 

data rates. 

Despite the advantages, cluster-based IoT networks also 

face several challenges [7]: 

• Cluster Head Selection: Choosing the optimal CH 

is crucial for maintaining network efficiency and 

prolonging node life. Inefficient CH selection can 

lead to uneven energy consumption and reduced 

network performance. 

• Scalability Issues: As the number of nodes grows, 

maintaining optimal cluster configurations and 

managing communication overhead becomes 

increasingly complex. 

• Data Aggregation: While data aggregation helps 

reduce communication overhead, it also 

introduces challenges in ensuring data accuracy and 

timely delivery. 

2.4 Applications and Use Cases 

Cluster-based IoT networks are widely used in various 

applications, including: 

• Smart Cities: Managing sensor data for traffic 

control, environmental monitoring, and energy 

management. 

• Healthcare: Monitoring patient health through 

wearable sensors and aggregating data for analysis. 

• Industrial IoT: Collecting and analyzing data from 

machinery and equipment to improve operational 

efficiency and predictive maintenance. 

In cluster-based IoT networks offer a scalable and 

energy-efficient approach to managing large-scale IoT 

deployments. However, effective cluster management and 

optimization are essential for addressing the inherent 

challenges and ensuring optimal network performance. 

III. OPTIMIZATION ALGORITHMS IN IOT 

ROUTING 

In IoT networks, routing algorithms are crucial for 

determining how data is transmitted from source to 

destination efficiently. Optimizations algorithms help 

improve various routing aspects such as energy 

consumption, delay, throughput, and reliability. Below, we 

explore several optimization algorithms and their 

applications to IoT routing. 

 

 

3.1. Genetic Algorithms (GA) for IoT Routing 

Genetic Algorithms (GA) are optimization algorithms 

inspired by natural selection. They work by evolving a 

population of candidate solutions over several 

generations to find the best solution for a given problem 

[8] [9] [10]. In the context of IoT routing, GA can be used to 

optimize routing paths, reduce energy consumption, and 

improve network performance. 

GA Algorithm for IoT Routing 

Step 1.  Initialization  

▪ Generate Initial Population: Create an initial 

population of candidate solutions. Each individual (or 

chromosome) represents a potential routing path 

through the IoT network. 

- Chromosome Representation: A chromosome 

could be represented as a sequence of nodes in 

the network (e.g., [N1, N3, N5, and N2]). 

Step 2.  Fitness Evaluation  

▪ Evaluate Fitness: Calculate the fitness of each 

chromosome based on a fitness function. The fitness 

function evaluates how well the routing path performs 

based on criteria such as energy consumption, delay, 

and packet delivery ratio. 

- Fitness Function :  

 
- Cost Function : For routing, the cost 

function might include energy consumption 

E(C), delay D(C), and routing overhead R(C): 

 
       Where wE, wD, and wR are weights for energy, delay, 

and routing overhead, respectively. 

Step 3.  Selection  

▪ Select Parents: Choose parent chromosomes based 

on their fitness scores. Chromosomes with higher 

fitness values are more likely to be selected. 

- Selection Probability : The probability pi of 

selecting chromosome i can be computed as: 

 
Where N is the population size. 

Step 4.  Crossover  

▪ Perform Crossover: Create offspring by combining 

parts of two parent chromosomes. Crossover helps to 

explore new areas of the solution space. 

- Single-Point Crossover : Given two parent 

chromosomes P1 and P2, and a crossover point 

c: 

Offspring 1: [P11,P12,...,P1c,P2c+1,P2c+2,...,P2n] 

Offspring 2: [P21,P22,...,P2c,P1c+1,P1c+2,...,P1n] 

Step 5.  Mutation  

▪ Apply Mutation: Introduce random changes to 

offspring chromosomes to maintain diversity in the 

population and avoid local optima. 

- Mutation Operation : For a chromosome C = 

[N1, N2, ..., Nn]), a mutation might involve 

swapping two nodes Ni and Nj: 

Cmutated = [N1, ..., Nj, Ni, ..., Nn] 

Step 6.  Replacement  

▪ Replace Old Population: Update the population by 

replacing some or all of the old chromosomes with new 

offspring. 
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- Replacement Strategy : One common strategy 

is to use elitism(superiority), where the best 

chromosomes from the current population are 

kept in the new population: 

New Population=Top k Best Chromosomes+Offspring 

           where k is the number of elite chromosomes. 

Step 7.  Termination  

▪ Check for Termination Condition: The algorithm 

terminates when a stopping criterion is met, such as 

a maximum number of generations or convergence of 

the fitness value. 

- Stopping Criterion:  

If Generation≥Max Generations or Convergence Criterion i

s met, then stop. 

              Example Application: Routing Optimization in a 

Smart Agriculture Network 

In a smart agriculture IoT network, the goal is to find 

optimal routing paths for sensor data to minimize energy 

consumption and delay. Here’s how GA can be applied: 

▪ Initialization: Generate an initial population of possible 

routing paths from sensor nodes to the central server. 

▪ Fitness Evaluation: Compute the fitness of each path 

based on energy consumption (using battery 

consumption models), transmission delay, and routing 

overhead. 

▪ Selection: Use roulette wheel selection to choose the 

best paths for crossover. 

▪ Crossover: Apply single-point crossover to combine 

different routing paths to generate new potential paths. 

▪ Mutation: Randomly swap nodes in the routing 

paths to introduce diversity. 

▪ Replacement: Replace less fit paths with new offspring 

paths while retaining some of the best paths from the 

previous generation. 

▪ Termination: Continue for a predefined number of 

generations or until the fitness improvement plateaus. 

Genetic Algorithms provide a robust method for optimizing 

routing in IoT networks by iteratively evolving solutions 

based on a fitness function. By employing techniques such 

as crossover and mutation, GA explores a wide solution 

space and finds effective routing paths that balance multiple 

performance criteria. 

3.2. Ant Colony Optimization (ACO) for IoT Routing 

Ant Colony Optimization (ACO) is inspired by the foraging 

behavior of ants and uses pheromone trails to guide the 

search for optimal solutions [11] [12] [13]. In the context of 

IoT routing, ACO can be used to find efficient routing 

paths that minimize energy consumption, delay, and other 

metrics. 

ACO Algorithm for IoT Routing 

Step 1. Initialization 

o Initialize Parameters: 

o Pheromone Matrix (τ): Initialize the pheromone 

matrix, which represents the pheromone levels on each 

edge of the graph. The initial pheromone value is 

often set to a small constant.  

τij(t=0)=τ0 

Where τ0 is a small positive constant. 

o Heuristic Information (η): Compute heuristic 

information, such as inverse of the cost or distance 

between nodes.  

ηij=1/ dij 

Where dij is the distance or cost between nodes 

i and j. 

o Ants and Iterations: Set the number of ants Nants and 

the number of iterations T. 

Step 2. Solution Construction 

o Ant Movement: Each ant constructs a solution 

(routing path) by moving from the source node to the 

destination node using a probabilistic rule based on 

pheromone levels and heuristic information. 

▪ Transition Probability: The probability Pij  

that an ant k moves from node iii to node j is 

given by:  

 
▪ Where α and β are parameters controlling 

the influence of pheromone and heuristic 

information, respectively. The sum is taken 

over all allowed nodes i that can be visited 

next. 

Step 3. Fitness Evaluation 

o Evaluate Solutions: After all ants have constructed 

their solutions, evaluate the fitness of each solution 

based on the objective function, such as total energy 

consumption or delay. 

▪ Objective Function: For a routing path Pk , 

the cost Ck  can be calculated as:  

  

where Eij is the energy consumption on edge 

(i,j), Dij is the delay on edge (i,j), Rij  is the 

routing overhead on edge (i,j), and wE , wD, 

wR  are weights for these metrics. 

Step 4. Pheromone Update 

o Local Pheromone Update: Update the pheromone 

level on the edges used by ants during the construction 

of solutions. 

▪ Local Update Rule: τij(t)=(1−ρ)⋅τij(t)+ρ⋅τ0 

Where, ρ is the local pheromone evaporation 

rate. 

o Global Pheromone Update: After all ants have 

completed their tours, update the pheromone levels 

globally based on the quality of the solutions found. 

▪ Global Update Rule:  

τij(t+1)=(1−ρ)⋅τij(t)+Δτij 

Where, Δτij is the amount of pheromone 

deposited by the ants. 

 It is typically calculated as:  

 
Where, Δτij is the amount of pheromone 

deposited by the ants. It is typically calculated 

as: 
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 Where, Q is a constant related to the amount 

of pheromone deposited. 

Step 5. Check for Convergence 

o Termination Condition: Determine if the algorithm 

should terminate based on convergence criteria or the 

maximum number of iterations. 

▪ Stopping Criterion:   

If Iteration≥T or convergence criterion is met, t

hen stop. 

Step 6. Solution Extraction 

o Best Solution: After termination, extract the 

best solution (routing path) based on the 

lowest cost found during the iterations. 

Example Application: Routing Optimization in a Smart 

Agriculture Network 

In a smart agriculture IoT network, ACO can be used to 

find optimal paths for data transmission from sensors to a 

central server: 

▪ Initialization: Set up pheromone values on network 

edges and heuristic information based on distance or 

cost. 

▪ Solution Construction: Ants explore paths from sensor 

nodes to the central server, guided by pheromone levels 

and distance. 

▪ Fitness Evaluation: Calculate the cost of each path 

based on energy consumption, delay, and overhead. 

▪ Pheromone Update: Update pheromone levels to 

reinforce better paths and evaporate pheromone on less 

optimal paths. 

▪ Check for Convergence: Continue for a predefined 

number of iterations or until the improvement in 

solution quality stops. 

▪ Solution Extraction: Select the path with the lowest 

cost as the optimal routing path. 

Ant Colony Optimization (ACO) provides an effective 

method for solving routing problems in IoT networks by 

simulating the foraging behavior of ants. By iteratively 

updating pheromone levels and exploring different 

paths, ACO can find efficient routing solutions that balance 

multiple performance metrics, such as energy consumption, 

delay and reliability. 

3.3. Particle Swarm Optimization (PSO) for IoT Routing 

Particle Swarm Optimization (PSO) is inspired by the social 

behavior of birds and fish. It involves a swarm of particles 

that explore potential solutions and adjust their positions 

based on their own experiences and the experiences of their 

neighbors[14] [15] [16]. In the context of IoT routing, PSO 

can be used to optimize routing paths to minimize metrics 

such as energy consumption, delay and routing overhead. 

Step-by-Step PSO Algorithm for IoT Routing 

Step 1. Initialization 

o Initialize Particles: Create an initial swarm of particles 

where each particle represents a potential routing path 

in the IoT network. 

Formula: 

▪ Position Vector: Each particle’s position xi is 

a vector representing a routing path. For 

example:  

xi=[N1,N2,...,Nn] 

▪ Velocity Vector: Each particle’s velocity vi 

represents the change in position:  

vi=[vi1,vi2,...,vin] 

▪  Initialization: Randomly initialize xi and vi 

for each particle. 

Step 2. Fitness Evaluation 

o Evaluate Fitness: Calculate the fitness of 

each particle based on the objective function. 

The fitness function evaluates how well the 

routing path performs in terms of energy 

consumption, delay, and routing overhead. 

▪ Fitness Function: For a routing path 

xi, the cost Ci  can be calculated as:  

Ci=wE⋅E(xi)+wD⋅D(xi)+wR⋅R(xi) 

Where: 

• E(xi) is the energy 

consumption of the path, 

• D(xi) is the delay, 

• R(xi) is the routing overhead, 

• wE , wD , and wR  are 

weights for these metrics. 

Step 3. Update Personal Best 

o Update Personal Best Position: Each particle updates 

its personal best position pbest,i if its current position is 

better than its previous personal best. 

▪ Personal Best Update:  

 
 Where Cbest,i  is the cost of the best 

position found by particle. 

Step 4. Update Global Best 

o Update Global Best Position: The best position among 

all particles in the swarm is updated to the global best 

gbest. 

▪ Global Best Update:  

 
Where Cbest,global is the cost of the best 

position found by any particle. 

Step 5. Velocity and Position Update 

o Update Velocity: Each particle updates its velocity 

based on its personal best and the global best positions. 

▪ Velocity Update:  

vi(t+1)=ω⋅vi(t)+c1⋅r1⋅(pbest,i−xi(t))+c2⋅r2⋅(gbest

−xi(t)) 

Where: 

▪ ω is the inertia weight, 

▪ c1 and c2 are cognitive and social 

coefficients, 

▪ r1 and r2 are random numbers between 0 

and 1. 

o Update Position: Each particle updates its position 

based on its velocity. 

▪ Position Update:  
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xi(t+1)=xi(t)+vi(t+1) 

Ensure that the updated position is valid according 

to the routing constraints. 

Step 6. Check for Convergence 

Step 7. Termination Condition: Determine if the 

algorithm should terminate based on convergence 

criteria or the maximum number of iterations. 

▪ Stopping Criterion:  

If Iteration≥T or convergence crit

erion is met, then stop. 

Convergence can be checked by 

observing if the change in global 

best fitness or positions falls 

below a threshold. 

Step 8. Solution Extraction 

o Best Solution: After termination, the global 

best position gbest represents the optimal 

routing path. 

Example Application: Routing Optimization in a Smart 

Agriculture Network 

In a smart agriculture IoT network, PSO can be used to find 

the optimal routing paths for data transmission from various 

sensor nodes to a central server: 

1. Initialization: Set up particles with random initial 

positions and velocities, representing possible routing 

paths. 

2. Fitness Evaluation: Calculate the cost of each path 

based on energy consumption, delay, and routing 

overhead. 

3. Update Personal Best: Each particle updates its 

personal best routing path if its current path is better. 

4. Update Global Best: The swarm updates the global 

best routing path based on the best path found by any 

particle. 

5. Velocity and Position Update: Adjust the particles 

velocities and positions to explore new potential routing 

paths. 

6. Check for Convergence: Continue for a set number of 

iterations or until improvements become negligible. 

7. Solution Extraction: Select the global best routing 

path as the optimal solution for data transmission. 

Particle Swarm Optimization (PSO) provides a powerful 

method for optimizing routing in IoT networks by 

simulating the social behavior of particles. By iteratively 

updating positions and velocities, PSO explores the search 

space effectively to find routing paths that balance multiple 

performance metrics, such as energy consumption and 

delay. 

3.4. Lion Optimization (LO) for IoT Routing 

Lion Optimization (LO) is inspired by the social hierarchy 

and hunting strategies of lions. In the context of IoT 

routing, LO can be utilized to optimize routing paths by 

simulating the behaviors and interactions of lions, including 

their hunting tactics and social structure [17] [18] [19]. 

Step-by-Step LO Algorithm for IoT Routing 

Step 1. Initialization 

o Initialize Parameters: 

▪ Lion Population: Initialize a population of 

lions, where each lion represents a potential 

routing path in the IoT network. 

▪ Parameters: Set parameters such as the 

number of lions Nlions, maximum iterations T, 

and constants related to hunting behavior and 

social interaction. 

▪ Lion Representation: Each lion xi can be 

represented as a sequence of nodes in the 

network:  

xi=[N1,N2,...,Nn] 

▪ Initial Fitness: Calculate the initial fitness of 

each lion based on the routing path. 

 

Step 2. Fitness Evaluation 

o Evaluate Fitness: Compute the fitness of each 

lion using an objective function that considers 

routing metrics such as energy consumption, 

delay, and routing overhead. 

▪ Fitness Function: For a routing path xi, the cost Ci can 

be calculated as:  

Ci=wE⋅E(xi)+wD⋅D(xi)+wR⋅R(xi) 

Where: 

▪ E(xi) is the energy consumption of the path, 

▪ D(xi) is the delay, 

▪ R(xi) is the routing overhead, 

▪ wE , wD , and wR are weights for these 

metrics. 

Step 3. Hunting Strategy 

o Identify Best Lions: Sort the lions based on their 

fitness and identify the top-performing lions (pride 

leader, sub-leaders and followers). 

Formula: 

▪ Ranking: Rank the lions based on their fitness 

values:  

Rank(i)=Sort(Ci) 

▪ Pride Leader: The lion with the best fitness 

value becomes the pride leader:  

xleader=arg. miniCi 

o Hunting: Update the positions of the lions based on 

their social structure and hunting strategy. 

Formula: 

▪ Leader's Influence: Lions update their 

positions towards the pride leader using:  

xi(t+1)=xi(t)+α⋅(xleader−xi(t)) 

Where, α is a coefficient controlling the 

influence of the leader. 

o Sub-Leader’s Influence: Sub-leaders guide the 

followers towards the leader’s position with some 

adjustments: 

xi(t+1)=xi(t)+β⋅(xsub−leader−xi(t)) 

where,β is a coefficient controlling the influence 

of the sub-leader. 

o Random Exploration: Introduce random changes to 

maintain diversity: 

xi(t+1)=xi(t)+γ⋅(Rand()−0.5) 

where γ is a coefficient controlling the amount of 

randomness. 

Step 4. Update Pride Members 
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o Adjust Positions: Update the positions of all lions 

based on the hunting strategies and influences from 

the pride leader and sub-leaders. 

▪ Position Update: The position update for a 

lion is a combination of leader’s influence, 

sub-leader’s influence, and random 

exploration:  

xi(t+1)=xi(t)+α⋅(xleader−xi(t))+β⋅(xsub−leader

−xi(t))+γ⋅(Rand()−0.5) 

Step 5. Check for Convergence 

o Termination Condition: Determine if the 

algorithm should stop based on convergence 

criteria or the maximum number of iterations. 

▪ Stopping Criterion:  

If Iteration≥T or convergence criterio

n is met, then stop.Convergence can 

be checked by monitoring the change 

in the global best fitness or positions. 

Step 6. Solution Extraction 

o Best Solution: After the algorithm terminates, the best 

routing path found by the pride leader represents the 

optimal solution. 

▪ Global Best Path:  

xbest=xleader 

where, xleader is the position of the pride leader 

with the lowest cost. 

Example Application: Routing Optimization in a Smart 

Agriculture Network 

In a smart agriculture IoT network, LO can be used to find 

the optimal routing paths for data transmission from various 

sensors to a central server: 

1. Initialization: Set up lions with random initial 

positions representing different routing paths. 

2. Fitness Evaluation: Calculate the cost of each 

routing path based on energy consumption, delay, 

and routing overhead. 

3. Hunting Strategy: Update lion positions based on 

the pride leader’s path, sub-leaders, and random 

exploration. 

4. Update Pride Members: Adjust positions to 

converge towards optimal paths while maintaining 

diversity. 

5. Check for Convergence: Continue for a 

predefined number of iterations or until 

improvements in fitness become negligible. 

6. Solution Extraction: Select the routing path with 

the lowest cost as the optimal solution. 

Lion Optimization (LO) provides a nature-inspired 

approach to optimizing routing paths in IoT networks. 

By simulating the social and hunting behaviors of lions, LO 

effectively explores potential solutions and converges 

towards optimal routing paths that balance multiple 

performance metrics such as energy consumption and delay. 

 

3.5. Firefly Algorithm (FA) for IoT Routing 

The Firefly Algorithm (FA) is inspired by the flashing 

behavior of fireflies. It uses the intensity of the light 

emitted by fireflies to guide the search for optimal solutions 

[20] [21] [22]. In the context of IoT routing, FA can be 

used to find efficient routing paths by optimizing 

performance metrics such as energy consumption, delay and 

throughput. 

Step-by-Step FA Algorithm for IoT Routing 

1. Initialization 

Initialize Fireflies: Create an initial population of fireflies, 

where each firefly represents a potential routing path in the 

IoT network. 

▪ Position Vector: Each firefly’s position xi 

represents a routing path: 

xi=[N1,N2,...,Nn] 

▪ Light Intensity: Initialize the light intensity Ii  

of each firefly based on the fitness value. The 

fitness function evaluates the routing path based on 

metrics such as energy consumption, delay, and 

routing overhead. 

Fitness Function: 

Ii=1 / Ci 

Where Ci is the cost of the routing path, 

computed as: 

Ci=wE⋅E(xi)+wD⋅D(xi)+wR⋅R(xi) 

▪ E(xi) is the energy consumption of the 

path, D(xi) is the delay, R(xi) is the routing 

overhead, and wE, wD, wR are weights for 

energy consumption, delay and routing 

overhead, respectively. 

2. Evaluate Light Intensity 

Compute Fitness: For each firefly, compute its light 

intensity based on its fitness value. The better the 

fitness, the higher the light intensity. 

▪ Light Intensity:  

Ii=1/ Ci 

3. Movement of Fireflies 

Attractiveness: Fireflies are attracted to brighter (more 

fit) fireflies. Update the position of each firefly based 

on the attractiveness of other fireflies. 

Attractiveness: The attractiveness β of firefly iii to 

firefly jjj is a function of their relative light intensities 

and the distance between them:  

 
Where, β0 is the attractiveness at distance 0, γ is 

the light absorption coefficient, and dij is the 

distance between fireflies i and j. 

Movement: Update the position of each firefly based 

on the movement towards brighter fireflies and a 

random component. 

▪ Position Update:  

xi(t+1)=xi(t)+βij⋅(xj(t)−xi(t))+α⋅(Rand()−0.5) 

Where, 

▪ xj(t) is the position of the brighter firefly, 

▪ α is the randomization parameter, 

▪ Rand() is a random number between 0 and 1. 

4. Update Light Intensity 

o Recalculate Intensity: After updating 

positions, recalculate the light intensity of 

each firefly based on its new fitness value. 

▪ Recalculate Light Intensity: Ii= 1/ Ci 

5. Check for Convergence 
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o Termination Condition: Determine if the 

algorithm should stop based on convergence 

criteria or the maximum number of iterations. 

▪ Stopping Criterion:  

     

If Iteration≥T or convergence criterion is met, then 

stop.Convergence can be checked by monitoring 

the change in the best fitness or positions. 

6. Solution Extraction 

Best Solution: After the algorithm terminates, the 

firefly with the highest light intensity represents the 

optimal routing path. 

Global Best Path:  

xbest=arg . maxi Ii 

Where, xbest  is the position of the firefly with the highest 

light intensity. 

Example Application: Routing Optimization in a Smart 

Agriculture Network 

In a smart agriculture IoT network, FA can be used to find 

the optimal routing paths for data transmission from sensors 

to a central server: 

1. Initialization: Set up fireflies with random initial 

positions representing different routing paths. 

2. Evaluate Light Intensity: Compute the light 

intensity of each firefly based on the cost of its 

routing path. 

3. Movement of Fireflies: Update firefly positions 

based on the attractiveness of brighter fireflies and 

random exploration. 

4. Update Light Intensity: Recalculate the light 

intensity of each firefly after position updates. 

5. Check for Convergence: Continue for a 

predefined number of iterations or until 

improvements in fitness become negligible. 

6. Solution Extraction: Select the routing path with 

the highest light intensity as the optimal solution. 

The Firefly Algorithm (FA) offers a nature-inspired 

approach for optimizing routing paths in IoT networks. 

By simulating the flashing behavior of fireflies, FA 

effectively explores the solution space and converges 

towards optimal routing paths that balance performance 

metrics such as energy consumption and delay. 

 

IV. EXPERIMENTAL RESULTS  

The simulations for this work are carried out using the NS-3 

network simulator on a Microsoft Windows 10 machine 

equipped with a CORE i5 processor, 8 GB of RAM, and a 

2.2 GHz clock speed. Table-1 provides a comprehensive 

overview of the simulation parameters. The performance of 

various optimization algorithms Genetic Algorithms (GA), 

Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Lion Optimization, and Firefly 

Algorithms is evaluated using several Quality of Service 

(QoS) metrics. These metrics include End-to-End Delay, 

Routing Overhead, Packet Delivery Ratio (PDR), Idle 

Listening Time, Energy Consumption and Throughput. The 

evaluation is conducted with respect to different network 

sizes, specifically varying the number of nodes in the 

simulation. In each simulation, all nodes in the IoT network 

are initially assigned a trust value of 0.5. The experiments 

are conducted across various node densities, including 50, 

100, 150, and 200 nodes. This setup, where the total 

number of mobile nodes reflects the population in the 

trusted model, allows for a thorough assessment of the 

algorithms under diverse network conditions and densities. 

Parameter Settings for the Optimization Algorithms  

For the Genetic Algorithms (GA), key parameters include 

the population size, which typically ranges from 50 to 200 

individuals, and the crossover rate (Pc), set between 0.7 and 

0.9 to determine the likelihood of crossover between pairs of 

individuals. The mutation rate (Pm) usually falls between 

0.01 and 0.05, influencing the probability of mutation. 

Selection methods such as tournament or roulette wheel 

selection, along with crossover methods like single-point or 

two-point crossover, are used to drive genetic evolution. 

Mutation techniques, including bit-flip and swap mutation, 

further refine solutions. The number of generations for 

running the algorithm generally ranges from 50 to 200, 

with elitism often retaining 1 to 5 of the best individuals 

across generations to ensure high-quality solutions. 

 

In Ant Colony Optimization (ACO), the number of ants 

typically varies from 20 to 100, impacting the 

exploration of the solution space. The pheromone 

evaporation rate (ρ), set between 0.1 and 0.5, dictates how 

quickly pheromone trails dissipate. The pheromone 

importance factor (α) and the heuristic importance factor (β) 

are usually set between 1 and 2, and 2 to 5, respectively, 

guiding the ant’s decision-making process. The algorithm 

employs different pheromone update methods, such as 

global or local updates. The total number of iterations for 

ACO ranges from 50 to 200, and the amount of 

pheromone deposited by ants varies based on the specific 

problem scale. 

 

For Particle Swarm Optimization (PSO), the swarm size 

typically ranges from 20 to 100 particles. The inertia 

weight (ω), influencing the impact of previous velocities on 

current velocities, is usually set between 0.4 and 0.9. The 

cognitive coefficient (c1) and social coefficient (c2), guiding 

the influence of the particle's personal best and the swarm's 

global best positions, are typically set between 1.5 and 2.0.  

Velocity limits are adjusted based on the problem's scale, 

while the randomness factor for exploring solutions 

generally ranges from 0.1 to 0.5. The algorithm runs for a 

number of iterations between 50 and 200. 

 

In Lion Optimization (LO), the number of lions ranges from 

20 to 100, and the alpha lion ratio, representing the fraction 

of the best lions, is typically between 0.1 and 0.2. 

Parameters controlling the hunting behavior and social 

interactions of the lions are set based on problem specifics. 

The number of iterations for LO generally ranges from 

50 to 200, and the random exploration factor is usually 

between 0.1 and 0.5, ensuring a balance between 

exploitation and exploration. 
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For the Firefly Algorithm (FA), the number of fireflies 

typically ranges from 20 to 100. The light absorption 

coefficient (γ), which controls the rate of light absorption, is 

generally set between 0.1 and 1.0. The attractiveness 

coefficient (β0), representing the initial attractiveness, 

usually ranges from 1.0 to 2.0. The randomness parameter 

(α), influencing the amount of randomness in movement, 

is typically set between 0.1 and 0.5. The number of 

iterations for FA ranges from 50 to 200, and the distance 

metric used to calculate the distance between fireflies can be 

either Euclidean or Manhattan. The update methods focus 

on attraction to brighter fireflies combined with random 

movement.  These parameter settings provide a foundational 

guide for tuning each optimization algorithm to achieve 

effective performance in various routing scenarios within 

IoT networks. 

 

 

 

Table 1: Simulation Parameters 

Parameter  Value 

Number of nodes h  200 nodes 

Network size Bt × Ct  500m X 500m 

Transmission range  2500 m 

Initial energy K0  240 J 

Propagation model  Two ray ground 

Number of rounds  50 

Packet size  1 MB 

Traffic type  CBR 

MAC type  802.11 

Antenna type  Omni directional antenna 

 

4.1. End-to-End Delay 

End-to-End Delay in IoT routing is the total time taken for a 

data packet to travel from the source node to the destination 

node across the network. It includes the time taken for 

packet transmission, propagation, queuing and processing 

delays. 

   End-to-

End Delay=Transmission Delay+Propagation Delay+Queu

ing Delay+Processing Delay 

 Where, 

▪ Transmission Delay  is the time required to push all the 

packet's bits into the link: 

Transmission Delay= (Packet Size) / (Transmission Rate) 

▪ Propagation Delay  is the time taken for a signal to 

propagate from the sender to the receiver: 

Propagation Delay= (Distance) / (Propagation Speed) 

▪ Queuing Delay  is the time a packet spends waiting in 

the queue before being transmitted: 

Queuing Delay=Queue Length × Packet Arrival Rate 

▪ Processing Delay  is the time required to process the 

packet headers and forward the packet: 

Processing Delay=Processing Time per Packet 

PSO tends to achieve lower end-to-end delay because it 

effectively balances exploration and exploitation during 

optimization. PSO’s global best solution guides the swarm 

towards efficient paths, reducing delay by minimizing 

hops and optimizing routes based on current network 

conditions. Its ability to adapt quickly to changing 

conditions helps in finding low-latency paths efficiently. 

ACO can achieve good results in end-to-end delay by 

effectively leveraging pheromone trails to find short paths. 

However, its performance can be impacted by the 

pheromone evaporation rate and the exploration-exploitation 

trade-off. While it generally finds efficient routes, it might 

require more iteration to converge to an optimal solution 

compared to PSO. FA performs well in optimizing end-to-

end delay by guiding fireflies towards brighter solutions 

(shorter delays). However, the performance can be limited 

by the randomness factor and the balance between 

attraction and random movement, which can lead to slower 

convergence and higher delays compared to PSO. GA can 

be less efficient in reducing end-to-end delay due to its 

reliance on crossover and mutation operations, which may 

lead to slower convergence. While GA explores a diverse 

set of solutions, it might take longer to find optimal paths 

compared to PSO, impacting the end-to-end delay.  LO may 

have higher end-to-end delays due to its complex behavior 

of hunting and social interactions among lions.  This LO 

algorithm’s convergence to optimal paths can be slower, and 

the exploration of the solution space may not be efficient 

like PSO, leading to potentially higher delays. 

 
Figure 2: End to End Delay Vs Number of nodes 

In conclude Figure 2 Shown, PSO is generally the best 

algorithm for minimizing end-to-end delay in IoT 

routing due to its efficient balance between exploration and 

exploitation, quick adaptation to network conditions, and 

effective convergence to optimal routes.  ACO and FA also 

provide good results but may exhibit slower convergence or 

higher delays due to their respective pheromone or 

attractiveness-based strategies.  GA and LO, while effective, 

often result in longer convergence times and higher end-to-

end delays due to their operational complexities and 

exploration mechanisms. 

 

4.2. Packet Delivery Ratio (PDR) 

Packet Delivery Ratio (PDR) is a key performance metric 

in IoT routing that measures the effectiveness of a routing 

algorithm in delivering packets from the source to the 

destination. It is defined as the ratio of the number of 

successfully received packets at the destination to the 

number of packets sent by the source. 
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PDR = (Number of Packets Received) / (Number of 

Packets Sent) x 100% 

PSO often excels in packet delivery ratio due to its effective 

global search capabilities. By optimizing paths based on 

swarm intelligence, PSO can find routes that minimize 

packet loss and improve overall delivery success. The 

algorithm's ability to adapt quickly to network changes and 

avoid congested or faulty paths contributes to higher PDR. 

ACO is effective in improving packet delivery ratio by 

utilizing pheromone trails to guide ants towards optimal 

paths. The pheromone-based approach helps in identifying 

reliable routes, which can lead to a high PDR. However, 

ACO may require more iteration to converge, and 

pheromone decay can affect the delivery ratio if not 

properly managed.  FA can achieve good packet delivery 

ratios by guiding fireflies towards brighter (more optimal) 

solutions. But, its performance can be influenced by the 

randomness parameter and light absorption coefficient, 

which can sometimes lead to suboptimal paths or increased 

packet loss. GA can be less efficient in terms of packet 

delivery ratio due to the potential for slower convergence 

and the use of crossover and mutation operations. While GA 

explores a broad solution space, it may not always focus on 

optimizing packet delivery, leading to lower PDR in 

some cases. LO may exhibit lower packet delivery ratios 

because its complex behavioral strategies can lead to 

longer convergence times and less effective routing paths. 

The lion's hunting and social interactions might not always 

lead to optimal routing solutions, impacting packet 

delivery. 

 
Figure 3: Packet Delivery Ratio Vs Number of 

nodes 

Figure 3 Shown, PSO generally provides the best Packet 

Delivery Ratio (PDR) in IoT routing due to its efficient 

search capabilities, adaptability to dynamic network 

conditions, and ability to identify reliable paths.  ACO also 

performs well but may be slower to converge and can be 

affected by pheromone management issues.  FA offers good 

performance but may be influenced by its randomness 

factors.  GA and LO, while useful, often show lower PDR 

due to slower convergence and less effective optimization of 

routing paths. 

 

4.3. Routing Overhead 

Routing Overhead refers to the additional network resources 

consumed by routing protocols beyond the actual data 

transmission. It includes the control messages, packet 

headers, and any other protocol-specific data required to 

establish and maintain routes. Lower routing overhead is 

desirable as it signifies more efficient use of network 

resources. 

Routing Overhead = (Total Control Packets Sent) /(Total 

Data Packets Sent) x 100 

PSO typically exhibits lower routing overhead due to its 

efficient search mechanism. PSO uses a swarm of particles 

to explore the solution space, with minimal communication 

between particles compared to some other algorithms. This 

leads to reduced control message exchange and overhead, as 

the focus is primarily on optimizing the routing paths 

directly without extensive route maintenance. ACO can 

have higher routing overhead due to the continuous 

exchange of pheromone information and the need for ants 

to frequently communicate their discovered routes. The 

pheromone update process and route discovery involve 

numerous control packets, which contribute to increase 

routing overhead, especially in dynamic or large networks. 

FA may also exhibit higher routing overhead compared 

to PSO due to the communication required among fireflies 

to share information about light intensity (quality of 

solutions). The need to exchange information about fitness 

levels and update positions contributes to additional 

overhead, although it is generally less than ACO. GA can 

lead to moderate to high routing overhead because of the 

frequent generation of control messages for crossover and 

mutation operations. The need for maintaining a population 

of potential solutions and performing genetic operations on 

them can result in considerable control packet exchanges.  

LO tends to have higher routing overhead due to its 

complex hunting and social interaction strategies among 

lions. The frequent updates and interactions for positioning 

and hunting can increase the number of control messages 

exchanged, thereby rising the routing overhead.  

 
Figure 4: Routing Overhead Vs Number of nodes 

Figure 4 Shown, PSO is generally the best for 

minimizing routing overhead in IoT routing due to its 

efficient particle-based communication, which reduces the 

need for excessive control messages.  ACO tends to have 

higher routing overhead because of its extensive pheromone 

communication and route discovery processes.  FA also 
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incurs some overhead due to information sharing among 

fireflies but generally less than ACO.  GA can result in 

moderate to high overhead due to genetic operations, and 

LO typically shows higher overhead due to its complex 

behavioral strategies. 

 

4.4. Throughput 

Throughput is a measure of the rate at which packets are 

successfully delivered to the destination over a network. It is 

typically expressed in bits per second (bps) or packets per 

second (pps). Higher throughput indicates that more data is 

being transmitted successfully, which is crucial for efficient 

network performance. 

Throughput = (Total Data Received) /(Total Time Taken) 

Where, Total Data Received is the total amount of data 

successfully received at the destination. Total Time Taken is 

the total time taken for the data to be transmitted and 

received. 

PSO generally offers high throughput due to its efficient 

optimization of routing paths. By balancing exploration 

and exploitation, PSO can identify routes that maximize data 

transmission efficiency and minimize delays. Its global 

search capabilities allow it to optimize paths that facilitate 

high data rates and efficient use of network resources. ACO 

can also achieve good throughput by utilizing pheromone 

trails to discover optimal paths for data transmission. The 

algorithm's ability to find efficient routes based on 

pheromone feedback generally supports high throughput. 

However, the effectiveness can be influenced by 

pheromone evaporation rates and the exploration-

exploitation trade-off, which may sometimes limit 

throughput. FA provides good throughput by directing 

fireflies towards brighter solutions, which typically 

correspond to efficient routes. However, the performance in 

terms of throughput can be variable depending on the 

parameters used, such as the attractiveness factor and 

randomness. If these parameters are not well-tuned, 

throughput may not be as high as that achieved with PSO. 

GA can achieve moderate throughput by exploring a 

broad range of solutions through crossover and mutation. 

However, the convergence process might be slower 

compared to PSO, which can affect the optimization of 

routing paths and, consequently, throughput. Additionally, 

the genetic operations can sometimes lead to suboptimal 

routing paths, impacting the overall throughput. LO often 

exhibits lower throughput compared to PSO due to its 

complex behavioral strategies, which can lead to slower 

convergence and less effective path optimization. The 

hunting and social interactions of lions might not always 

result in the most efficient routing paths, potentially 

reducing throughput. 

 
Figure 5: Throughput Vs Number of nodes 

Figure 5 Shown, PSO is typically the best algorithm for 

achieving high throughput in IoT routing due to its effective 

balance between exploration and exploitation, which enables 

it to find and optimize high-data-rate paths efficiently.  ACO 

also supports good throughput by discovering efficient 

routes based on pheromone feedback, though its 

performance can be influenced by pheromone management.  

FA can deliver good throughput but is dependent on the 

tuning of its parameters.  GA and LO generally result in 

lower throughput compared to PSO due to slower 

convergence and less efficient path optimization. 

4.5. Energy Consumption 

Energy Consumption refers to the amount of energy used by 

nodes in a network to transmit, receive, and process data. In 

IoT routing, minimizing energy consumption is crucial for 

prolonging the network’s operational lifetime, especially 

given the limited energy resources of IoT devices. 

Energy Consumption=Energy for Transmission+Energy fo

r Reception+Energy for Processing 

Where: 

• Energy for Transmission is the energy used to 

send data packets: 

Etrans=Packet Size×Transmission Energy per Bit 

• Energy for Reception is the energy used to 

receive data packets: 

Erec=Packet Size×Reception Energy per Bit 

• Energy for Processing is the energy used for 

processing and routing decisions: 

Eproc=Processing Time×Processing Energy per Unit

 Time 

PSO tends to have lower energy consumption because it 

minimizes the number of control messages and optimizes 

routing paths effectively. By efficiently exploring the 

solution space and finding optimal paths with fewer hops, 

PSO reduces the overall energy used for data transmission 

and processing. Its adaptive nature ensures that energy is 

used efficiently throughout the network. ACO can result in 

higher energy consumption due to the frequent updates 

of pheromone trails and the numerous control packets 

required for route discovery and maintenance. The constant 

exchange of pheromone information and route adjustments 

can lead to increased energy usage, especially in large or 

dynamic networks. FA may incur moderate energy 

consumption due to the need for fireflies to exchange 
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information about their fitness (brightness). Although this 

exchange is less intensive than in ACO, it can still 

contribute to additional energy usage. The algorithm’s 

randomness and attraction mechanisms can sometimes result 

in suboptimal routing paths, affecting energy efficiency. GA 

typically leads to higher energy consumption due to the 

genetic operations like crossover and mutation, which 

require significant control and communication among nodes. 

The process of maintaining and evolving a population of 

solutions can result in substantial energy expenditure for 

transmitting and processing genetic data. LO often exhibits 

higher energy consumption due to its complex behavior 

involving hunting and social interactions among lions. 

The frequent updates and interactions required for position 

adjustments and hunting strategies can lead to increased 

energy usage for data transmission and processing.  

 
Figure 6: Energy Consumption Vs Number of 

nodes 

Figure 6 Shown, PSO is generally the best for 

minimizing energy consumption in IoT routing due to its 

efficient optimization of routing paths and low control 

message overhead.  ACO can result in higher energy usage 

because of the extensive pheromone exchange and route 

updates.  FA typically has moderate energy consumption 

due to information sharing among fireflies.  GA and LO 

usually have higher energy consumption due to the 

significant amount of control messages and complex 

behavioral strategies, leading to increased energy usage in 

routing and processing. 

4.6. Latency 

Latency refers to the time delay experienced in the network 

from the moment a data packet is sent by the source node 

until it is received by the destination node. In IoT routing, 

minimizing latency is critical for ensuring timely delivery of 

data and improving the responsiveness of the network. 

 

Latency=Transmission Time+Propagation Time+Queuein

g Time+Processing Time 

 

Where, 

o Transmission Time  is the time required to 

push all the packet's bits into the link: 

Ttrans= (Packet Size)/ (Transmission Rate) 

o Propagation Time  is the time taken for the 

signal to travel from sender to receiver: 

Tprop= (Distance) / (Propagation Speed) 

o Queueing Time  is the time a packet spends in 

a queue before being transmitted: 

Tqueue = Average Queue Length x Average Service 

Time 

o Processing Time  is the time required to 

process the packet at intermediate nodes: 

Tproc=Processing Time per Packet × 

Number of Nodes 

PSO is often the most effective at minimizing latency due 

to its efficient optimization process. By quickly 

converging to optimal or near-optimal solutions, PSO can 

identify paths that reduce the number of hops and 

transmission delays, thereby lowering the overall latency. 

The algorithm’s ability to rapidly adapt and optimize paths 

in real-time helps maintain low latency in dynamic IoT 

networks.  ACO can exhibit higher latency due to the 

time required for pheromone updates and route 

discoveries. The algorithm’s process of exploring and 

updating paths through pheromone trails involves multiple 

iterations, which can introduce delays. As a result, ACO 

might have longer latency compared to PSO, especially in 

larger or more dynamic networks where pheromone 

management becomes more complex. FA typically shows 

moderate latency. The algorithm’s use of attractiveness and 

light intensity to guide fireflies towards optimal solutions 

can introduce delays due to the need for frequent updates 

and fitness evaluations. Although it generally performs well, 

its effectiveness in reducing latency depends on the 

parameter tuning and the speed of convergence. GA can 

result in higher latency due to the time-consuming 

processes of crossover, mutation, and fitness evaluation. 

The population-based approach requires multiple 

generations to converge to an optimal solution, which can 

introduce delays. The complexity of genetic operations may 

lead to increased latency in routing decisions. LO often 

experiences the highest latency among the algorithms 

due to its complex behavioral strategies, including 

hunting and social interactions. The frequent updates and 

interactions required for position adjustments and hunting 

strategies contribute to increased latency, as these 

interactions can be computationally intensive and time-

consuming.  

 
Figure 7: Latency Vs Number of nodes 
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Figure 7 Shown, PSO is typically the best algorithm for 

minimizing latency in IoT routing due to its rapid 

convergence and efficient optimization of routing paths.  

ACO tends to have higher latency due to the iterative 

pheromone update process and route discovery overhead.  

FA can show moderate latency, influenced by parameter 

tuning and the fitness evaluation process.  GA generally 

results in higher latency due to the evolutionary processes 

and multiple generations required for convergence.  LO 

often has the highest latency due to its complex interaction 

and behavioral strategies, which can introduce significant 

delays in routing. 

 

4.7. Idle Listening Time 

Idle Listening Time refers to the period during which an IoT 

node remains active and listens for incoming messages, 

but no data is being transmitted or received. This time is 

considered a waste of energy because the node's radio is on 

without any productive communication. Minimizing Idle 

Listening Time is crucial for enhancing energy efficiency 

in IoT networks, as it helps to extend the lifespan of 

battery-powered nodes. To quantify Idle Listening Time, 

you can use the following formula: 

Idle Listening Time=Total Time Node is Active−Time Node

 is Transmitting or Receiving 

In a more formal analysis, if  Tactive is the total time the node 

is in an active state, Ttransmit is the time spent transmitting 

data, and Treceive is the time spent receiving data, then: 

Idle Listening Time = Tactive - Ttransmit + Treceive 

PSO can optimize routing paths to reduce Idle Listening 

Time by finding the most energy-efficient routes. Its 

ability to explore a wide solution space and converge to an 

optimal solution quickly makes it effective for minimizing 

energy consumption. ACO can optimize routing by 

finding efficient paths and reducing energy waste. 

However, it may require more iteration to converge to a 

solution compared to PSO, potentially resulting in higher 

Idle Listening Time during the search phase. FA can be 

effective in reducing Idle Listening Time by finding 

optimal paths. Its search capability is generally good, but it 

may not always converge as quickly as PSO, leading to 

potentially higher energy consumption during the search 

process. GA can be effective in optimizing routing paths but 

may involve higher computational complexity and longer 

convergence times compared to PSO, potentially resulting 

in higher Idle Listening Time. LO can provide competitive 

results in optimizing routing paths. However, its 

convergence time and computational complexity can 

vary, potentially affecting Idle Listening Time compared to 

PSO. 

 
Figure 8: Idle Listening Time Vs Number of 

nodes 

Figure 8 Shown,  PSO is favored for its fast convergence 

and efficient exploration of the solution space, leading to 

lower Idle Listening Time and better overall energy 

efficiency in IoT routing.ACO, Effective but may take more 

iteration to converge, potentially leading to higher Idle 

Listening Time during the search phase. FA, Good search 

capability but may not converge as quickly as PSO, which 

can impact energy efficiency.GA, Effective but often 

involves higher computational complexity and longer 

convergence times, potentially resulting in higher Idle 

Listening Time. LO, Can be competitive but may have 

variable convergence times and complexity, affecting Idle 

Listening Time. For optimizing energy efficiency in IoT 

routing, PSO is generally the most effective algorithm due 

to its balance of exploration and exploitation, leading to 

lower Idle Listening Time and better overall energy 

performance compared to the other algorithms. 

 

4.8. Scalability 

Scalability refers to the ability of a routing algorithm to 

handle an increasing number of nodes or network size 

efficiently. An algorithm is considered scalable if its 

performance remains effective as the network grows in 

terms of nodes, network size, or traffic load. Scalability is 

often measured by assessing performance metrics like 

throughput, delay, and overhead as the number of nodes 

increases. One way to quantify scalability is: 

Scalability Index = (Performance Metric)/ (Network Size 

or Number of Nodes) 

Where, Performance Metric could be throughput, delay, or 

overhead.  Network Size or Number of Nodes is the total 

number of nodes in the network. Measures the average 

energy consumed by each node as the network size 

increases. 

Average Energy Consumption per Node= 

(Total Energy Consumed) / N 

PSO is generally the most scalable algorithm among the 

listed options. Its particle-based approach efficiently 

explores the solution space and adapts to increasing network 

sizes with minimal increase in computational complexity. 
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The swarm intelligence model allows PSO to handle larger 

networks without a significant degradation in 

performance, as it primarily relies on local and global best 

solutions rather than exhaustive search or complex 

interactions. ACO can face scalability challenges because 

the pheromone update process and route discovery require 

significant communication overhead, which increases with 

the network size. As the number of nodes grows, the 

pheromone trails and the number of ants need to be 

managed carefully to avoid excessive computation and 

memory usage, which can impact scalability.  FA shows 

moderate scalability. While it efficiently directs fireflies 

towards optimal solutions, the algorithm’s performance can 

be affected by the need to maintain and update information 

about the fitness (brightness) of multiple fireflies. As the 

network size increases, the interaction among fireflies and 

the updating process can become computationally intensive, 

this may impact scalability. GA generally exhibits lower 

scalability due to the computational complexity involved 

in managing and evolving a large population of solutions. 

The processes of crossover, mutation, and fitness evaluation 

can become computationally expensive and resource-

intensive as the number of nodes increases, leading to 

slower performance and scalability issues. LO typically 

shows the lowest scalability among the algorithms. Its 

complex behavioral strategies, such as hunting and social 

interactions, involve frequent updates and communication 

among lions. As the network size increases, these 

interactions can lead to significant computational and 

communication overhead, affecting scalability.  

 
Figure 9: Scalability Vs Number of nodes 

Figure 9 Shown,   PSO is the best algorithm for 

scalability in IoT routing due to its efficient exploration 

and minimal computational overhead, which allows it to 

handle larger networks effectively.  ACO faces scalability 

challenges due to the increasing complexity of pheromone 

management and route discovery with network size.  FA 

shows moderate scalability but can become computationally 

intensive with larger networks. GA and LO are generally 

experience lower scalability due to their high computational 

and communication overhead, which also increases with the 

number of nodes and network size. 

 

V. CONCLUSION 

In this research work, we examined several optimization 

algorithms Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Firefly Algorithm (FA), Genetic 

Algorithms (GA) and Lion Optimization (LO) for improving 

energy efficiency and Quality of Service (QoS) parameters 

in IoT routing. Each algorithm was analyzed based on its 

performance in terms of end-to-end delay, packet delivery 

ratio (PDR), routing overhead, throughput, energy 

consumption, scalability and latency.  Particle Swarm 

Optimization (PSO) emerged as the most effective 

algorithm for IoT routing due to its ability to minimize 

latency, maximize throughput, and reduce energy 

consumption efficiently. Its swarm intelligence approach 

allows it to quickly converge to optimal or near-optimal 

routing solutions, making it highly suitable for dynamic and 

large-scale IoT networks. Ant Colony Optimization (ACO), 

while effective in discovering efficient paths, showed higher 

latency and energy consumption due to the pheromone 

update mechanism and route discovery overhead. Its 

performance is heavily influenced by the management of 

pheromone trails and network size.  Firefly Algorithm (FA), 

though generally effective, demonstrated moderate 

scalability and latency. Its performance can be improved 

with better parameter tuning and optimization of the firefly 

attraction mechanism.  Genetic Algorithms (GA) exhibited 

higher latency and energy consumption due to the 

complexity of genetic operations and the need for multiple 

generations to converge. While GA provides a diverse set of 

solutions, its computational overhead limits its effectiveness 

in large-scale networks.  Lion Optimization (LO) faced 

challenges in scalability and latency due to its complex 

behavioral strategies. The frequent updates and interactions 

among lions led to increased computational overhead and 

delays in routing decisions. 

Future research should focus on addressing the limitations 

identified in this study and exploring the following areas: 

▪ Algorithm Enhancements: Investigate 

improvements and hybridization of the existing 

algorithms to combine the strengths of multiple 

techniques. For example, combining PSO with 

other algorithms like DNN or RNN could enhance 

performance metrics such as scalability and energy 

efficiency. 

▪ Dynamic Network Environments: Develop and 

test algorithms in highly dynamic and 

heterogeneous IoT environments where nodes 

frequently join, leave, or move. This will help in 

assessing the algorithms' adaptability and 

robustness in real-world scenarios. 

▪ Energy-Efficient Mechanisms: Explore advanced 

energy-efficient techniques and mechanisms within 

the optimization algorithms to further reduce 

energy consumption, especially in resource-

constrained IoT devices. 
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