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ABSTRACT  
This paper explores an extension of the RSA encryption system, called generalized RSA, which relies on the multiplicative 

level lines of integers modulo . We introduce the line indicator function and analyze its properties. We formalize the 

generalized RSA by introducing new parameters and demonstrate that this encryption system can achieve maximum 

generalization for certain generators. We establish relationships between the line indicator and Euler’s totient. Finally, we 

present an algorithm for key generation within the framework of generalized RSA. 
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1. INTRODUCTION 

Since its creation by Rivest, Shamir, and Adleman ([1], 

[4], [5]) in 1978, the RSA encryption system has captured the 

attention of researchers in mathematical cryptography due to 

the challenge it poses with one of the most fundamental 

mathematical problems: the factorization of large integers into 

prime components ([4], [13]). Indeed, the security of RSA 

relies on the assumption that factoring a large integer into its 

prime factors is a problem difficult to solve in polynomial 

time [10]. 

To introduce the RSA encryption system, consider a 

modulus , where  and  are distinct prime numbers 

[1]. The RSA can be defined by the quintuple . 

In this definition: 

•  represents the set of plaintext messages  composed 

of positive integers. 

•  is the set of keys used for encryption and decryption, 

comprising a public key , where  is the encryption 

exponent, and a private key  with  as the 

decryption exponent. 

•  is the set of ciphertexts, also positive integers. 

•  is the set of encryption functions  

producing a ciphertext . 

•  is the set of decryption functions  

producing a plaintext .  

The RSA principle relies on the use of two mathematically 

linked but distinct keys: a public key for encryption and its 

corresponding private key for decryption ([1], [4]). To 

establish a fundamental relationship between encryption and 

decryption operations, RSA relies significantly on Euler's 

theorem [13]. 

Theorem 1 (Euler). For any integer  with its Euler's totient 

, if  is coprime to , then . 

Proof. Euler's totient  [5] is defined as the number of 

positive integers less than  that are coprime to . If  is 

coprime to , then . 

Consider the set of positive integers less than  that are 

coprime to . This set forms the multiplicative group of units 

modulo , denoted  (see [5]). 

The order of an element  in  is the smallest positive 

integer  such that  [12]. 

For any integer  in , the order of  divides Euler's 

totient . This implies that . 

Theorem 2. In an RSA encryption system with modulus , 

any message , public key , and corresponding private key 

 satisfy: . 

Proof. Let  be the public key and  the corresponding 

private key, and  a plaintext message. 

Apply the encryption function  to message  using the 

public key : 

 

Now apply the decryption function  to the ciphertext  using 

the private key : 

 

We want to show that . Consider the expression for 

: 

 

By the property of congruences [4] modulo , we can write 

 as . 

Since  and  are a valid RSA key pair, we know that  is 

the inverse of  modulo . This means  is a 

multiple . 
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We can write  as  for some . Thus, we have: 

 

Using Euler's theorem above (and also see [4]), we can 

simplify the previous expression: 

 

Thus, we have shown that , implying 

. 

 

2. MULTIPLICATIVE LEVEL LINE AND 

LINE INDICATOR FUNCTION 

We introduce a variant of RSA called generalized RSA, 

based on the multiplicative level lines [7] of integers modulo 

. Consider the function , where  is 

a non-zero integer. Let  be an integer modulo  [5], and we 

seek to determine the solutions to the equation:  

(1)     

Define the set , 

representing the set of solution pairs to equation (1). This set 

is also called the multiplicative level line of  (see [7]). 

Proposition 1. For any integer  modulo , the set  is 

non-empty. 

Proof. To prove that  is non-empty for any integer  

modulo , we need to show that there exists at least one pair 

 of integers such that . 

Case 1: . Start with the special case where 

. The equation becomes: . 

This means  is divisible by . Choose . Then, for 

any integer , we have: . 

Thus,  for any integer . Therefore,  is non-

empty. 

Case 2: . We need to find  and  such that: 

. 

Fix  to an arbitrary value, for example, . Then we seek 

 such that: . 

This reduces to:  . 

Since  is an integer modulo , there exists at least one 

integer  satisfying this equation, namely . Thus: 

 

To complete the proof, consider any integer  modulo . By 

Bézout’s theorem [5], for any integers  and , there exist 

integers  and  such that: . 

If , then there are solutions to the Diophantine 

equation [5]: . 

In particular, when ,  is coprime to , and the equation 

becomes: . 

This implies that there exists a multiplicative inverse of  

modulo , denoted , such that: . 

Choose  and . Then: . 

This proves that , so  is non-empty for any 

integer  modulo . 

Having established that  is non-empty for any integer 

 modulo , we can now examine a symmetric property of 

this set. 

Proposition 2. For any integer  modulo , if the pair  

belongs to , then its symmetric pair  also belongs to 

. 

Proof. This follows from the commutative property of 

multiplication in modular arithmetic (see [5]). 

Having established the non-emptiness of  for any 

integer  modulo  and the symmetry of this set with respect 

to its components, we can introduce a crucial arithmetic 

function associated with this set. We define the determinant of 

 as an arithmetic function called the line indicator, 

denoted , defined in [7] by: . 

Proposition 3. The line indicator function  is strictly 

positive for any integer  modulo .  

Proof. This follows from the non-emptiness of . 

Since we have established the strict positivity of the line 

indicator function  for any integer  modulo , we can now 

explore an essential property of this function: its 

multiplicativity under certain conditions. 

Proposition 4. The line indicator function  is multiplicative 

when  for two integers  and . Specifically, 

for an integer  modulo , we have: 

(2)   

where   and  are the reductions of  modulo  and  

respectively. 

Proof. Consider two integers  and  such that 

. Let  be an integer modulo . Define the 

level line sets: 

  

  

  

where  and . 

The Chinese remainder theorem ([5], [13], [14]) ensures that 

solutions modulo  can be decomposed into solutions 

modulo  and  using the respective reductions  and  

(see [7]). 
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Let  be a solution to . Then there 

exist solutions  and  such that: 

,  and 

 with , 

 and . 

The solutions modulo  are obtained by combining the 

solutions modulo  and . More formally, each pair 

 and  gives a solution 

 using the isomorphisms of the Chinese 

remainder theorem. 

The total number of solutions modulo  is thus the product 

of the number of solutions modulo  and . 

Since  counts the number of pairs  in , we 

have [7]: . 

According to the multiplicativity of solutions induced by the 

Chinese remainder theorem, we obtain:  

 

for any integer  modulo . 

Having demonstrated the multiplicativity of the indicator 

function  under certain conditions, we will now express 

 explicitly using the prime factorization of . 

Theorem 3. Let  be an integer decomposed into prime 

factors . Then, for any integer  modulo , 

the indicator function  can be expressed using the 

following formula: 

(3)  

 

   

where the parameters  and  are conditionally defined as 

follows: 

•  and  if and only if  et , 

•  and  otherwise. 

We will not provide a proof for the result stated above, and 

refer the reader to [7]. However, we note that the proof of the 

primality result between integers is based on three key ideas:  

1. The multiplicative group , the set of units modulo , 

decomposes as a direct product of the multiplicative 

groups . For each prime factor , the indicator 

function  is influenced by  ; 

2. The function  provides a logarithmic 

measure of the divisibility of  with each . These 

results were first observed in [8];  

3. It is possible to write weak formulations of the 

parameters  and  to adjust for specific cases of 

divisibility. 

These methods are not only useful in formulating the 

expression for , but also provide insights into many number 

theory models, such as the order function of proper non-trivial 

subgroups of the additive group , and we refer the reader to 

[8] for further details. Finally, we note that, in this 

development, we can intuitively understand that  strongly 

depends on how  interacts with each prime factor of . If  

shares a prime factor with , it reduces the number of integers 

that are coprime to  and can be multiplied with  to produce 

a result in the same equivalence class of , and vice versa. 

To illustrate this relationship in more detail, we explore a 

specific case via the following corollary. 

Corollary 1. Let  be an integer decomposed as . 

Then, the indicator function is given by: 

(3’)   

Proof. The proof is straightforward since , we have 

 and . Hence, we easily obtain the given 

expression. 

In detail, let . Since  divides , we can write 

 for some integer . Since  also divides , we can 

write  for some integer . Note that , 

otherwise  would not be the greatest common divisor of  

and . 

Now, let  and  be integers modulo  such that 

 and . For each integer  

modulo  in , we have . 

Thus, for each integer  modulo , we have . 

Therefore, the number of distinct elements in  is 

, because there are distinct integers of the form 

 that are all divisors of  [8]. 

Multiplying this number by , which gives the 

order of the multiplicative group , we obtain  

, which is the value of  for 

. 

By observing the particular structure of the previous 

corollary, we can deepen our understanding by examining 

how the indicator function behaves when compared to Euler’s 

totient function for integers coprime to . This leads us to the 

following proposition. 

Proposition 5. Let  be an integer modulo . If  and  are 

coprime, the indicator function is equal to Euler’s totient 

function. 
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Proof. Let  be an integer modulo . We will show that when 

 is coprime to , the indicator function  is equal to 

Euler’s totient function . 

Suppose  is coprime to . This means that . 

Now, consider an element  in . By the definition of 

, this pair satisfies the equation . 

Since  is coprime to , we will prove that 

. 

Consider an integer  modulo . If , it 

would mean that  and  are not coprime, which would 

contradict the fact that  is coprime to . Therefore, we must 

have . Similarly, we can show that 

. 

As a result, each pair  in  is also a pair of integers 

coprime to , and they are all distinct. Therefore, the number 

of elements in , i.e., is equal to , which is the 

number of positive integers less than or equal to  that are 

coprime to . 

With this proposition, we establish a fundamental link 

between the indicator function and Euler’s totient function, 

showing that  aligns perfectly with  when  and  

are coprime. We can now generalize this observation to a 

broader framework with the following theorem. 

Theorem 4. The indicator function generalizes Euler’s totient 

function for any integer  modulo . 

Proof. Let  be the indicator function and  the Euler’s 

totient function. We will show that  is a generalization of . 

First, consider  and , We want to prove that there 

exists an integer  such that . 

We know that for , Euler’s totient function is given by: 

 

and the indicator function by: 

 

Next, consider . We want to show that 

 contains . For this, note that it suffices to take 

 and  for all . Since , this is 

possible only if  for all . 

In this case, the indicator function  simplifies to: 

 

which shows that  naturally generalizes Euler’s totient 

function  for any integer  modulo . 

Thus, we see that the indicator function  not only 

includes  as a special case, but it also extends it by 

incorporating the arithmetic properties of  and  in more 

general cases. Euler’s totient function, used in the RSA 

algorithm, finds its counterpart in the indicator function. This 

correspondence opens new perspectives in the development of 

cryptographic theories. 

 

3. STRUCTURE OF THE GENERALIZED 

RSA 

Definition 1: Let . We say that  is a generator of the 

RSA encryption system with modulus  if: i) , ii) 

. 

Definition 2: Let . We will call -generator in the 

RSA encryption system with modulus , the set: 

. 

Remark: In the Generalized RSA encryption system with 

modulus , we distinguish four types of -generators of 

the cryptographic configurations, which are: -generator, -

generator, -generator, and -generator. 

Definition 3: Let  be the generator. Considering  as 

the RSA modulus, the degree of generalization of RSA, 

denoted , is given by: 

. 

The degree of generalization  represents a measure of the 

influence of the generator  on the structure of the RSA 

encryption system. This concept introduces a complexity 

scale, where a higher  indicates greater unpredictability in 

the key generation process. 

Now, let us analyze the degree of generalization and its 

implications for the structure of the RSA encryption system. 

We introduce the following theorem, which specifies the 

conditions under which an RSA encryption system tends 

toward maximum generalization. 

Theorem 5. Let  be the generator. An RSA encryption 

system with modulus  achieves maximum 

generalization if there does not exist a nonzero integer  such 

that .  

Proof. By definition,  is a function that depends on the 

arithmetic structure of the generator  and its interaction with 

the modulus . For , where  and  are distinct prime 

numbers, the choice of generator  influences the way the 

keys are generated. 

Suppose there exists a generator  such that . 

This would imply that  increases the complexity of the 

system more than . However, if  is already optimized to 

maximize , such a  could not exist. Suppose, for 
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contradiction, that there exists a  such that . 

This would imply that  is not optimal, which contradicts our 

initial assumption that  maximizes generalization. Therefore, 

 must be maximal among all possible generators. 

Thus, the generator  is such that it maximizes , and no other 

generator  can produce greater unpredictability or 

complexity. 

This theorem lays the foundation for characterizing RSA 

encryption systems in terms of maximum generalization. By 

studying particular cases, we can better understand the 

practical implications of this theory. This leads us to the 

following corollary, which defines the conditions for a 

classical RSA encryption system. 

Corollary 2. Let  be the generator. An RSA encryption 

system with modulus  is said to be classical if for all , 

. In other words, when its degree of 

generalization . 

This result establishes the conditions under which an RSA 

encryption system is said to be classical, based on the degree 

of generalization . We now proceed by introducing a new 

definition that extends the use of the line indicator in the 

context of RSA moduli. 

Remark 2. For an RSA modulus  and a generator , 

the line indicator is expressed as follows: 

(4) 

 

 

This definition introduces a detailed form of the line 

indicator for generators in the context of RSA moduli. We can 

now establish a crucial theorem that links this indicator to 

Euler’s totient function. 

Lemma 1. In an RSA encryption system with modulus  and 

generator , the relation between the line indicator and Euler’s 

totient function is given by: 

(5) 

 

This result provides an understanding of the relationship 

between the line indicator and Euler’s totient function in the 

RSA context, directly leading to the following corollary that 

specifies the calculation of the degree of generalization. 

Corollary 3. In an RSA encryption system with modulus 

 and generator , the degree of generalization is 

formulated as: 

(6)  

This corollary highlights how the degree of generalization 

is calculated directly from the arithmetic properties of the 

generator . We proceed to a result that explores the 

conditions for maximum generalization. 

Proposition 6. An RSA encryption system with modulus 

 and generator  tends toward maximum 

generalization if . 

Proof. We simply decompose . Indeed: 

 

 

 

Note that if the degree of generalization is maximal, then 

. In other words, by definition, there does not exist a 

 such that . 

Therefore,  is the largest factor of , large 

enough such that  exceeds . which implies 

that . 

Having established the result of generalization in terms of 

the generator , let us introduce the invertibility transform , 

which is a strictly positive function defined by the expression: 

(7)  

 

for any nonzero integer . 

This function is essential for understanding algebraic 

properties related to the invertibility of elements in the RSA 

encryption system structure. 

Proposition 7.  For any generator  in the RSA encryption 

system with modulus , there exists a constant  that 

is coprime with . 

Proof. Suppose  is an integer and prove that it exists for 

any generator . Since  is a nonzero integer and  

where  and  are distinct primes, we examine the terms 

involved in .  

The terms  and  are integers, and the 

multiplication of these terms with  and 

 is always an integer for any value of . 

Hence,  is an integer. This guarantees its existence for 

any generator . 

We now prove that  is coprime with , i.e., 

. Using Euler’s theorem, which states that if 

, then , we conclude that 

 is indeed coprime with  for any generator , 
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regardless of its relationship with . 

Following the study of the invertibility transform  and its 

properties in the RSA encryption system, we can deepen our 

analysis by focusing on the necessary criteria for encryption 

and decryption exponents. The next result aims to establish 

fundamental propositions regarding these exponents in a 

context where the modulus  is decomposed as  and the 

generator . 

Lemma 2. In an RSA encryption system with modulus 

 and generator , a strictly positive integer  is an 

encryption exponent if and only if: i)  and  ii) 

. 

Having established the necessary criteria for an integer to 

be an encryption exponent, we now turn to the analysis of the 

decryption exponent, which is essential in the structure of the 

RSA encryption system. 

Lemma 3. Let  be the modulus and  the generator in 

an RSA encryption system. The positive integer  is a 

decryption exponent if and only if there exists 

. 

These lemmas on encryption and decryption exponents 

highlight the importance of the line indicator function  

and the invertibility transform  within the structure of the 

RSA encryption system. 

 

5. GENERALIZED RSA ALGORITHM 

The Generalized RSA Algorithm introduces a significant 

enhancement to the key generation process while keeping the 

encryption and decryption procedures of the classical RSA 

intact [11]. The encryption and decryption steps remain 

unchanged, preserving compatibility with existing 

applications. 

The improvement primarily lies in the introduction of 

additional parameters during key generation. The use of a 

generator  and its invertible transform  provides 

increased complexity, making attacks more difficult without 

altering the simplicity of the encryption and decryption 

processes. 

Thus, the implementation of the Generalized RSA 

Algorithm can be performed without requiring major changes 

to existing infrastructures. The following algorithm outlines 

the key generation according to the generalized RSA model, 

ensuring the creation of more robust public and private keys. 

Input: Two prime numbers  and a random non-zero 

number , the generator. 

Output: A public key  and its corresponding private key . 

1. Compute  (the modulus). 

2. Compute 

. 

3. Choose an integer  such that  and 

. 

4. Compute  such that  (the modular 

inverse of ).   

This algorithm ensures the generation of secure keys by 

leveraging the generalized RSA model. Additionally, it offers 

a more robust and complex approach, particularly suited for 

modern computational environments [10] where security 

remains a primary concern. 

The key element of this advancement lies in replacing 

Euler's totient function with the line indicator function, which 

opens new perspectives in the RSA encryption system by 

providing significantly larger encryption and decryption 

exponents, thereby increasing the complexity of any attack 

attempt. 

Although the key pairs generated by the Generalized RSA 

Algorithm,  for the public key and  for the corresponding 

private key, remain at the core of the system, they are now 

complemented by additional parameters. 

The Generalized RSA offers several significant advantages 

over its classical counterpart, thereby enhancing its relevance 

in contexts where computer security is critical. Notable 

advantages include: 

• Increased attack complexity: Cryptographic attacks have 

become more sophisticated, requiring appropriate 

countermeasures. Generalized RSA aims to strengthen 

security against these new threats. 

• Evolution of computation: The computational power of 

computers has significantly increased since the original 

design of RSA ([1], [9]). The generalization aims to 

ensure security even in the face of more powerful 

computing technologies. 

• Uncertainty in parameters: The introduction of the 

generator  creates uncertainty in the predictability of 

the generated keys. Attackers are faced with a multitude 

of potential combinations, making their attempts to 

compromise the system more uncertain. 

• Larger exponents: With the line indicator function, it is 

possible to have encryption and decryption exponents far 

greater than the RSA modulus . This makes prime 

factorization-based attacks even more difficult. 
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• New challenges for attackers: The benefits introduced by 

the line indicator imply that even if an attacker succeeds 

in finding the prime numbers  and  of the RSA 

modulus  [1], probing the decryption exponent  

becomes extremely complex. Traditional prime 

factorization-based attacks are no longer sufficient, 

necessitating new methods and a deeper understanding 

of the function . 

• Adaptation to cryptographic advancements: By 

incorporating the function , this approach offers 

adaptation to new advancements in cryptography [9], 

which is crucial in a context where attack techniques are 

constantly evolving. 

• Compatibility with existing standards: Although based 

on a generalized approach, this method remains 

compatible with existing RSA standards [9], making it 

easier to integrate into current systems. 

Example in MATLAB: 

In MATLAB, the RSA key generation process can be 

implemented with the following code: 

function [k_e, k_d] = generalizedRSA(p, q, g) 

    % Compute Euler's totient function for g 

    phi_g = phi(p,q,g); 

    % Select a random number e such that 1 < e < phi(g) 

    e = randi([2, phi_g-1]); 

    while gcd(e, phi_g) ~= 1 

        e = randi([2, phi_g-1]);  % Repeat if gcd(e, phi(g)) != 1 

    end 

    % Compute d such that d = e^(-1) mod phi(g) 

    d = modInverse(e, phi_g); 

    % Public key is (e, n), private key is (d, n) 

    n = p * q;  % RSA modulus 

    k_e = [e, n];  % Public key 

    k_d = [d, n];  % Private key 

end 

function inv = modInverse(a, m) 

    % Function to find modular inverse of a mod m 

    [gcd_val, x, ~] = gcd(a, m); 

    if gcd_val == 1 

        inv = mod(x, m);  % Return modular inverse 

    else 

        error('Inverse does not exist'); 

    end 

end 

function phi_val = phi(p,q,g) 

    % Function to compute the indicator of g  

    phi_val = (1 + log(gcd(p, g)) / log(p))*(1 + log(gcd(q, g)) / 

log(q))*(q-1)*(p-1);  

end 

The following examples illustrate the practical application of 

both classical and generalized RSA algorithms with specific 

numerical values for  and , along with the generated 

public and private keys: 

Example 1: classical RSA 

Input values:  

•   

•   

Steps: 

1. Compute . 

2. Compute . 

3. Choose  ( ). 

4. Compute  such that . Using the 

extended Euclidean algorithm, we find . 

Keys: 

• Public key:  

• Private key:  

Example 2: generalized RSA (with ) 

Input values:  

•   

•   

•   

Steps: 

1. Compute . 

2. Compute 

. 

3. Choose  ( ). 

4. Compute  such that . We find 

. 

Keys: 

• Public key:  

• Private key:  

Example 3: generalized RSA (with ) 

Input values:  

•   

•   
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•   

Steps: 

1. Compute . 

2. Compute 

. 

3. Choose  ( ). 

4. Compute  such that . We find 

. 

 

Keys: 

• Public key:  

Private key:  

Example 4: generalized RSA (with ) 

Input values:  

•   

•   

•   

Steps: 

1. Compute . 

2. Compute 

. 

3. Choose  ( ). 

4. Compute  such that . We find 

. 

Keys: 

• Public key:  

• Private key:  

The examples reveal an important distinction between the 

classical and generalized RSA algorithms. In the classical 

RSA, both the encryption exponent  and the decryption 

exponent  are typically constrained to values less than . 

However, in the generalized RSA, it is evident that  can 

exceed , as shown in the second, third and fourth examples, 

and  can also be larger than  (as in the third example). 
Focusing on examples 1 and 4, we can draw a direct 

comparison that highlights the advantages of the generalized 

RSA over the classical RSA. Both examples share the same 

modulus  and use the same encryption exponent 

. However, the method of generating the decryption 

exponent  differs significantly between the classical and 

generalized versions.  

This feature demonstrates its potential for increased 

complexity and security by introducing additional parameters, 

making it more difficult for attackers to apply standard 

factorization and decryption techniques. The capacity to work 

with larger values of  and  without compromising the 

encryption and decryption processes highlights a significant 

advantage in cryptographic resilience, particularly in scenarios 

where more robust key structures are necessary.  
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