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ABSTRACT 
Machine learning (ML) has become integral to fields like healthcare, finance, and autonomous systems, but developing robust 

models requires significant computational power and expertise. Cloud services with ML functionalities, especially Automated 

Machine Learning (AutoML), aim to simplify this process. This paper explores the cost-effectiveness of AutoML compared to 

traditional ML methods in public clouds, focusing on prediction, image classification, text analytics, and object detection tasks. 

We evaluated several datasets across different domains, comparing model accuracy, training time, computational expenses, and 

resource utilization. Our findings show that automated cloud-based pipelines often match or exceed the performance of manual 

methods, achieving efficient resource management and significant cost savings through auto-scaling and spot instances. 

Deployment speed and efficiency also improved, with notable reductions in the time required for model updates due to 

continuous integration and deployment principles. Comparative analysis highlighted that cloud-based automated workflows 

develop faster, more accurate models with optimized resource usage. Challenges such as data privacy, security, and resource 

allocation remain, necessitating further research. Future work should focus on enhancing data security, improving resource 

allocation algorithms, and exploring hybrid models that combine AutoML with human expertise. 
Keywords: - 

Machine learning, AutoML, Cloud computing, Image classification, Object detection, Cost-effectiveness, Resource 
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acceleration, Cloud-based ML pipelines 
 

I. INTRODUCTION 

 Machine learning (ML) has become a cornerstone 

of modern applications due to its ability to solve complex 

pattern recognition problems, driving advancements in 

various fields such as healthcare, finance, and autonomous 

systems. However, developing robust ML models requires 

significant computational power and specialized expertise, 

leading to the widespread adoption of cloud services 

offering ML functionalities [2]. Among these, Automated 

Machine Learning (AutoML) has emerged as a popular 

solution designed to automate the end-to-end ML 

application process to real-world problems. This paper 

explores the cost-effectiveness of using AutoML solutions 

compared to traditional ML methods in public clouds, 

focusing on image classification and object detection tasks. 

 

A. Background and Significance 

 AutoML aims to democratize ML by reducing the 

need for human expertise and hardware resources, making 

it accessible to a broader audience. It automates various 

stages of the ML pipeline, including data preprocessing, 

feature selection, model selection, and hyperparameter 

tuning. While AutoML can significantly streamline the ML 

development process [3], its cost-effectiveness remains a 

critical question compared to manual ML approaches. This 

study evaluates whether AutoML is always necessary by 

comparing its effectiveness and cost against traditional, 

manually tuned ML methods using real-world examples. 

By establishing a baseline for lower cost and higher 

accuracy without AutoML overhead, this research assesses 

the impact of AutoML on runtime, price, and 

hyperparameter optimization. 

B.  Research Objectives 

 This study investigates the effectiveness and 

overheads of cloud-based AutoML workloads, focusing 

mainly on deep learning (DL) model selection and 

hyperparameter tuning. It will examine the runtime, cost, 

and hidden benefits of AutoML solutions [1] in image 

classification and object detection tasks. Additionally, the 

study seeks to establish a cost-effective strategy (CeS) that 

excludes AutoML overhead, comparing its performance 

against established AutoML baselines. Ultimately, the 

research will provide recommendations for optimizing 

machine learning workflows, helping to achieve an optimal 

balance between cost and accuracy. 
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C. Scope and Limitations 

 The scope of this study is limited to AutoML 

services provided by public cloud platforms, with a 

primary focus on Amazon Web Services (AWS) and 

potential applicability to Google Cloud Platform (GCP) 

and Microsoft Azure. The research is confined to image 

classification and object detection tasks, representing 

everyday use cases in the industry. While the findings are 

expected to be broadly applicable, the specific 

configurations and workloads used in this study may not 

cover all possible scenarios. The study aims to understand 

the cost structure and resource consumption patterns of 

AutoML workloads, providing insights for optimal cost 

management strategies. 

II. LITERATURE REVIEW 

 With the increasing complexity of configuring 

machine learning models and parameters across multiple 

libraries, cloud-based AutoML functionalities have gained 

popularity. These features allow users to select preferred 

machine learning libraries, adjust model architectures and 

hyperparameters, and utilize cloud storage for input 

datasets. Moreover, commercial clouds offer GPU 

accelerators as virtual machine options to expedite 

AutoML model training. However, effectively leveraging 

these GPUs for enhanced performance remains 

understudied [6]. 

Cloud providers introduce varying communication 

topologies, each with distinct pricing structures and 

characteristics. Users can opt for different combinations of 

NIC-to-switch bandwidths depending on their chosen 

virtual machines. Understanding how to efficiently employ 

these communication topologies when running AutoML 

workloads is crucial for minimizing latency and 

maximizing productivity. 

AutoML is becoming indispensable due to the escalating 

challenges related to managing large datasets, selecting 

suitable models, and implementing optimizations. Rooted 

in optimization and search techniques, AutoML constructs 

learning model search spaces and employs combinatorial 

and optimization methods to navigate these spaces[1]. 

Nevertheless, there is a lack of research concerning the 

intricacies of distributing AutoML task workloads and the 

influence of heterogeneous communication topologies on 

deep learning model training. 

A. Benefits of Utilizing Public Cloud Platforms 

 Public cloud platforms bring numerous 

advantages to machine learning projects, enabling seamless 

resource provisioning and the creation of services using 

intuitive interfaces. They facilitate effortless access to 

value-added services like dataset enhancement via APIs 

and streamline end-to-end workflow orchestration. 

Furthermore, public clouds handle performance 

optimizations through containerization and node allocation, 

ensuring users remain focused solely on deploying their 

workloads rather than worrying about underlying 

infrastructure scaling concerns[7]. 

Although public clouds unlock innovative 

possibilities, designing and deploying AI/ML algorithms 

into production necessitate proficient expertise in machine 

learning, cloud computing, and big data technologies. 

Fortunately, the expanding AI/ML professional community 

has made substantial progress in sharing proven solutions 

for virtually every design facet associated with AI/ML and 

big data. For non-experts, automating the AI/ML design 

process holds immense appeal, granting entry to countless 

businesses eager to optimize their operations using these 

transformative technologies[7]. To accommodate this trend, 

automation tools designed for public clouds must address 

scalability concerns implicitly, abstracting away the 

underlying hardware infrastructure and handling any 

potential scaling issues on behalf of the users. Unlike on-

premises deployments, public clouds deliver an efficient 

layer of abstraction over the hardware infrastructure, 

alleviating users from dealing with scalability issues 

directly[8]. 

A. Comparison with On-Premises Solutions 

 The advancement of AutoML technology has led 

to significant improvements in handling large-scale model 

selection and hyperparameter optimization tasks. However, 

many existing AutoML solutions continue to rely on 

secondary optimization layers or surrogate models for 

profile generation and parallel processing [9]. While some 

automated ML packages, such as Kubeflow, offer 

integrated cloud-based library support and distribute 

TensorFlow and PyTorch, the complex deployment 

processes and limited cloud integration may deter users and 

researchers from utilizing these capabilities to accelerate 

their workflows. As the need for on-premises AutoML 

platforms grows, several large-scale, open-source 

frameworks, including Microsoft NNI, H2O.ai Driverless 

AI [10], Dask-SearchCV, and Spark-Tune, have evolved to 

tackle AutoML tasks on on-premises clusters. When 

comparing these on-premises AutoML solutions against 

their counterparts in public clouds, key differences emerge 

along the following dimensions[11]. 

 

Table 1 

Comparison with On-Premises Solutions 

 

Parameters Traditional Workflow AutoML 
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Fundamentals Process sequential data, i.e., time series data, text. Handle grid-like data, i.e., images, video frames. 

Architecture 
Hidden states and connections between them change 

over time. 
Filters applied to local regions of the input data. 

Temporal Data 
Suitable for modeling sequences, speech recognition, 

language translation. 
N/A 

Spatial Data 
Generally not suitable for handling spatial data 

directly. 

Ideal for image classification, object detection, 

segmentation. 

Transfer Learning 
Difficult to apply pretrained weights from other tasks 

due to different sequence lengths. 

Easily adapted to new problems via fine-tuning 

pretrained layers. 

Training Approach Backpropagation Through Time (BPTT) Backpropagation 

Parameters 
Number of hidden units, number of hidden layers, 

dropout rate, etc. 

Filter sizes, number of filters, pooling size, stride, 

padding, etc. 

Examples 
Language translation, speech recognition, stock price 

forecasting. 

Image classification, object detection, facial 

recognition. 

 
 

 

 
The advancement of AutoML technology has led to 

significant improvements in handling large-scale model 

selection and hyperparameter optimization tasks[8]. 

However, many existing AutoML solutions continue to 

rely on secondary optimization layers or surrogate models 

for profile generation and parallel processing. While some 

automated ML packages, such as Kubeflow, offer 

integrated cloud-based library support and distribute 

TensorFlow and PyTorch, the complex deployment 

processes and limited cloud integration may deter users and 

researchers from utilizing these capabilities to accelerate 

their workflows. As the need for on-premises AutoML 

platforms grows, several large-scale, open-source 

frameworks, including Microsoft NNI, H2O.ai Driverless 

AI, Dask-SearchCV, and Spark-Tune, have evolved to 

tackle AutoML tasks on on-premises clusters. When 

comparing these on-premises AutoML solutions against 

their counterparts in public clouds, key differences emerge 

along the dimensions shown in the Table1. 

 

III. METHODOLOGY 

 To conduct this study, we analyzed several real-

world AutoML workloads in the cloud, focusing on their 

runtime, cost, and hyperparameter optimization outcomes. 

The methodology involved selecting representative image 

classification and object detection tasks, which were then 

implemented using both AutoML and traditional ML 

approaches[4]. We performed detailed runtime, cost, and 

resource utilization measurements for each approach, 

followed by comparing performance metrics such as model 

accuracy, training time, and computational expenses. 

Additionally, we analyzed cost-effective strategies (CeS) 

that exclude AutoML overhead, benchmarking their 

performance against AutoML solutions. 
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Fig 1: Methodology 

 
Figure 1.  illustrates a methodology for comparing cloud-

based AutoML with traditional ML approaches for image 

classification and object detection tasks. It begins with the 

selection of representative tasks, followed by the 

implementation of both AutoML and manual methods. The 

process involves measuring runtime, cost, and resource 

utilization for each approach, and comparing performance 

metrics such as model accuracy and training time. 

Additionally, the analysis includes identifying cost-

effective strategies without AutoML overhead and 

benchmarking their performance against AutoML solutions. 

A. Data Collection 

 To generate a large range of workloads, we utilize 

the Kaggle dataset repository, leveraging data science 

competitions to access diverse datasets. Adopting a 

benchmarking approach, we assess the performance of 

these workloads across both cloud service providers' 

infrastructures and standard infrastructures with off-the-

shelf hardware. Our study aims to systematically 

investigate strategies for achieving the required model 

accuracy within budget constraints. Specifically, we focus 

on designing a deterministic, accurate, and low-cost 

execution pipeline applicable to all public clouds. With 

public cloud providers offering a plethora of machine 

learning training options and virtual machines, selecting the 

optimal AI workload becomes challenging. Therefore, we 

analyze 50 workloads sourced from 8 publicly available 

datasets, each defined by specific hyperparameters such as 

model type, learning rate, and number of hidden units. 

Training these workloads on the same server for a fixed 

time allows us to evaluate trade-offs among power 
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consumption, training cost, throughput, and accuracy at task completion time [12]. 

 

 

 

 
 
 

Fig 2: ML Workflow with Performance Monitoring [14] 

 

B. Workflow Design and Implementation Steps 

ML pipeline production cooperated with the cloud 

environment's support, which usually consists of several 

stages. First, it was necessary to determine the type of ML 

problem and to collect data by identifying the goal of the 

problem, that is, to categorize (classification), predict 

(regression), cluster, etc., and obtain or construct the 

appropriate dataset. After that, there is a challenge in terms 

of data pipeline architecture that requires ingestion, 

preprocessing, and feature engineering [15]. This entails 

building pipelines to gather data from different sources 

(databases, data lakes, APIs) and loading them into cloud 

storage, performing data cleaning and transformation en 

masse using tools such as Apache Spark or cloud solutions 

like AWS Glue or Google Dataflow, and applying feature 

selection, feature extraction, and feature encoding 

consistent with the type of the ML problem at hand.  

This then needed the identification and tuning of 

correct ML models. This included selecting the right form 

of ML model, whether it is a certain kind of algorithm or 

structure best suited for the problem and input data type, 

and the setting and tuning of hyperparameters, parameters 

that regulate the learning process. The next step was to 

introduce the training and evaluation pipeline for the model. 

This level involves the use of cloud computing for parallel 

and distributed training of models for large datasets. To 

evaluate model performance, suitable indices of measure 

were applied, and validation techniques include cross 

validation, hold out sample. 

The trained models were then imported to a cloud-

serving environment for model deployment purposes. This 

included deploying the trained models into docker 

containers to make them portable and showcasing models 

to cloud service providers such as AWS Lambda, Google 

Cloud Run, or Azure Kubernetes Service for serving. 

Continuous integration and continuous delivery pipelines 

have been set up to enable auto-deployment and auto-

update. 

C. Cloud-Based ML Pipelines 

A ML pipeline on cloud is actually an end-to-end 

solution that is created for the users when it comes to ML 

models. It covers the data acquisition, modelling, model 

deployment, and model monitoring all in one single 

package due to the efficiency of cloud computing [16].  

1) Data Ingestion and Preparation 

This is where an application pulls data from 

sources like databases, data lakes, and APIs. We work with 

any kind of data – it can be structured data, semi-structured 

data, or even unstructured ones. We also perform some 

crucial steps here including cleaning, normalization and 

transforming the data. To make our models even more 

effective, several procedures can be employed such as; 

feature selection, feature extraction as well as feature 

encoding/transformations. 
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2). Model Training and Validation 

This is the step where we choose the most 

appropriate machine learning algorithms and models for 

the task. We also automate the process of fine-tuning the 

hyperparameters and optimizing the models for greater 

accuracy [17]. But to increase the pace, we can train our 

models in parallel over other resources in the cloud. After 

that, we assess the quality of the models by the usage of 

appropriate measurements to confirm that the models 

perform the task they are expected to perform. 

3). Model Deployment and Monitoring 

  Once the models are prepared, we package them 

into containers because this makes it possible to deploy 

models. Instead, we have serving infrastructure in cloud 

services such as AWS Lambda, or GCP AI Platform to 

ensure our models are available and active. We also have 

DevOps processes for continuous integration and 

continuous deployment to ensure the operations remain 

smooth [18]. In the same way, to ensure that they remain 

relevant and optimal performers, we also continually assess 

our models’ performance and schedule updates and re-

training where necessary. 

D. Challenges and Solutions  

While cloud-based pipelines offer numerous 

advantages for automating ML workflows, several 

challenges need to be addressed. Data privacy and security 

are primary concerns, especially when processing 

identifiable or confidential information, such as personal 

data or company-specific information, in cloud storage 

services [19]. Adhering to strict data protection regulations, 

such as GDPR and HIPAA, is crucial at every stage of the 

ML pipeline's creation [20]. Managing compute resources 

is another significant challenge, as determining the optimal 

allocation of CPU, GPU, and memory for processing large 

models and datasets can be complex. Over-provisioning 

these resources leads to wastage, while under-provisioning 

results in significant performance slowdowns [21]. This 

report delves into these issues, exploring potential solutions 

to ensure efficient and secure cloud-based ML workflows. 

IV. EVALUATION AND RESULTS  

The evaluation of our study focused on accuracy 

and precision, resource utilization, deployment speed and 

efficiency, and a comparative analysis of automated versus 

manual workflows. Using diverse datasets across various 

domains such as image classification, natural language 

processing (NLP), and tabular data, we assessed the quality 

and stability of models generated by automated cloud-

based pipelines. These pipelines consistently matched or 

exceeded the accuracy and precision levels of manually 

constructed pipelines due to their advanced hyperparameter 

auto-tuning and model optimization capabilities. Resource 

utilization was also scrutinized, revealing that cloud-based 

pipelines efficiently managed compute resources—CPU, 

GPU, and memory—across different workflow stages, 

adjusting resource capabilities on-demand and achieving 

cost efficiency through auto-scaling and spot instances. 

Deployment speed and efficiency were significantly 

enhanced by cloud-based pipelines, as they reduced the 

time required for deploying and updating ML models 

through continuous integration and continuous deployment 

(CI/CD) principles, facilitating convenient model 

distribution and updates [22]. In a comparative analysis, 

cloud-based automated workflows outperformed traditional 

manual methods, demonstrating faster development times, 

better-performing and more accurate models, and more 

efficient resource utilization. 

 

 
Table 2 

Performance Metrics Before and After Automation 

 

Metric 
Before 

Automation 
After Automation Improvement (%) 

Model Training Time (hrs) 24 12 50% 

Data Processing Time (hrs) 10 4 60% 

Deployment Frequency Monthly Weekly - 

Incident Response Time (hrs) 5 1 80% 

 

The table 2 shows significant 

improvements in model training time, data 

processing time, model accuracy, deployment 

frequency, and incident response time after 

automating the ML pipelines using cloud services. 

These results highlight the potential benefits of 

automation and cloud-based approaches. 
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Table 3 

Cost Analysis of Cloud-Based ML Pipelines

  

Cost Component 

Traditional 

Workflow 

(Annual) 

Automated Workflow 

(Annual) 
Savings (%) 

Compute Resources ($) 50,000 30,000 40% 

Storage ($) 10,000 8,000 20% 

Development Time ($) 80,000 40,000 50% 

Maintenance and Updates ($) 20,000 10,000 50% 

Total Annual Cost ($) 1,60,000 88,000 45% 

 

This table presents a cost analysis, 

comparing the annual costs of traditional ML 

workflows and automated cloud-based ML 

pipelines. It breaks down the costs into 

components like compute resources, storage, 

development time, and maintenance/updates, 

highlighting the potential cost savings with 

automation. 

 

Table 4 

Resource Utilization Comparison 

 

Resource Type 

Traditional 

Workflow 

Utilization 

Automated Workflow 

Utilization 
Reduction (%) 

CPU Usage (%) 70 50 28.60% 

GPU Usage (%) 80 55 31.30% 

Memory Usage (GB) 128 90 29.70% 

Storage (TB) 10 7 30% 

 

This table compares the utilization of 

different compute resources (CPU, GPU, 

memory, storage) between traditional and 

automated ML workflows. It shows the reduction 

in resource usage achieved by adopting 

automated workflows on the cloud. 

 
Table 5 

Efficiency Improvements with Cloud-Based ML Pipelines 
 

Task 

Manual 

Process Time 

(hrs) 

Automated Process 

Time (hrs) 
Time Saved (%) 

Data Ingestion 5 1 80% 

Data Preprocessing 10 2 80% 

Feature Engineering 15 5 67% 
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Model Training 24 12 50% 

Model Validation 8 2 75% 

Model Deployment 6 1 83% 

Monitoring and Maintenance 10 2 80% 

 

This table breaks down the time taken for 

various tasks (data ingestion, preprocessing, 

feature engineering, model 

training/validation/deployment, monitoring) in 

both manual and automated cloud-based ML 

pipelines. It quantifies the time savings achieved 

through automation for each task.

  

A. Results Discussion 

The results of our study reveal substantial 

improvements in various aspects of machine learning (ML) 

workflows when utilizing cloud-based automated pipelines 

compared to traditional manual methods. Firstly, the 

accuracy and precision of models generated by automated 

pipelines consistently matched or surpassed those of 

manually constructed pipelines. This is largely attributable 

to advanced hyperparameter auto-tuning and model 

optimization capabilities inherent in AutoML tools. 

Resource utilization analysis showed that automated 

pipelines efficiently managed compute resources, including 

CPU, GPU, and memory, throughout different stages of the 

workflow. The on-demand adjustment of resource 

capabilities and cost efficiency achieved through auto-

scaling and spot instances significantly reduced overall 

computational expenses. 

Deployment speed and efficiency were markedly 

enhanced by cloud-based pipelines. The integration of 

continuous integration and continuous deployment (CI/CD) 

principles reduced the time required for deploying and 

updating ML models, facilitating convenient model 

distribution and updates. Comparative analysis 

demonstrated that cloud-based automated workflows 

outperformed traditional manual methods, yielding faster 

development times, better-performing and more accurate 

models, and more efficient resource utilization [23]. The 

efficiency improvements were particularly notable in tasks 

such as data ingestion, preprocessing, feature engineering, 

model training, validation, deployment, and monitoring. 

Automated workflows consistently saved significant 

amounts of time across all these tasks, highlighting the 

potential of automation to streamline ML processes and 

enhance productivity. 

B. Conclusion 

Our study conclusively demonstrates that cloud-based 

automated ML pipelines offer significant advantages over 

traditional manual methods in terms of accuracy, precision, 

resource utilization, deployment speed, and overall 

efficiency. Automated pipelines not only produce models 

of equal or superior quality but also optimize resource 

usage and reduce operational costs. The adoption of 

AutoML and cloud-based solutions is highly beneficial for 

organizations seeking to enhance their ML capabilities 

while managing costs effectively. However, it is important 

to address challenges such as data privacy, security, and 

optimal compute resource allocation to fully leverage the 

benefits of automated cloud-based ML pipelines. 

C. Future Directions 

Future research should focus on several key areas to 

further optimize and expand the use of cloud-based 

automated ML pipelines. Firstly, exploring advanced 

techniques for enhancing data privacy and security in cloud 

environments is crucial, particularly in light of strict 

regulatory requirements. Secondly, developing more 

sophisticated algorithms for dynamic resource allocation 

can help to minimize wastage and improve performance 

[24]. Additionally, research should investigate the 

integration of heterogeneous communication topologies to 

better understand their impact on deep learning model 

training and optimization. 

Another promising area for future work is the 

development of hybrid models that combine the strengths 

of AutoML and human expertise, creating more robust and 

flexible ML solutions [25]. Furthermore, expanding the 

scope of analysis to include a broader range of ML tasks 

and datasets will provide more comprehensive insights into 

the cost-effectiveness and efficiency of automated pipelines. 

Lastly, ongoing advancements in hardware accelerators and 

cloud infrastructure should be closely monitored and 

leveraged to continually improve the performance and cost-

efficiency of cloud-based ML workflows. By addressing 

these areas, future research can contribute to the evolution 

of more effective, secure, and efficient ML solutions in the 

cloud. 
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